题目:

给出长度为N的数组,找出这个数组的最长递增子序列。(递增子序列是指,子序列的元素是递增的)

例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10。

Input

第1行:1个数N,N为序列的长度(2 <= N <= 50000)

第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9)

Output

输出最长递增子序列的长度。

Input示例

8

5

1

6

8

2

4

5

10

Output示例

5

分析:

令 Dp[i] = 长度为 i + 1 的上升子序列的中末尾元素最小值(不存在就是INF)

则可以最开始Dp[i] 全部设置为INF。 然后由前到后逐个考虑数列元素, 对于

每个 Num[j] , 如果 i = 0, 或者 Dp[i-1] < Num[j] 就可以用

Dp[i] = min(Dp[i], Num[j]) 进行更新。

实现:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int INF = 0x7fffffff;
const int maxn = 50000 + 131; int Dp[maxn], Num[maxn]; int main() {
int N;
while(cin >> N) {
for(int i = 0; i < N; ++i) cin >> Num[i];
fill(Dp, Dp+N, INF);
for(int i = 0; i < N; ++i) {
*lower_bound(Dp, Dp+N, Num[i]) = Num[i];
}
cout << lower_bound(Dp, Dp+N, INF) - Dp << endl;
}
}

51nod--1134 最长递增子序列 (动态规划)的更多相关文章

  1. 51nod 1134 最长递增子序列

    题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> usi ...

  2. 51nod 1134最长递增子序列

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素 ...

  3. 51Nod - 1134 最长递增子序列【动态规划】

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N ...

  4. LCS 51Nod 1134 最长递增子序列

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个 ...

  5. LIS 51Nod 1134 最长递增子序列

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个 ...

  6. 51Nod 1134 最长递增子序列(动态规划O(nlogn))

    #include <iostream> #include <algorithm> #include <stdio.h> #define MAXN 50010 usi ...

  7. 51Nod:1134 最长递增子序列

    动态规划 修改隐藏话题 1134 最长递增子序列  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递 ...

  8. 51 Nod 1134 最长递增子序列 (动态规划基础)

    原题链接:1134 最长递增子序列 题目分析:长度为  的数列  有多达  个子序列,但我们应用动态规划法仍可以很高效地求出最长递增子序列().这里介绍两种方法. 先考虑用下列变量设计动态规划的算法. ...

  9. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

  10. 51nod 1218 最长递增子序列 | 思维题

    51nod 1218 最长递增子序列 题面 给出一个序列,求哪些元素可能在某条最长上升子序列中,哪些元素一定在所有最长上升子序列中. 题解 YJY大嫂教导我们,如果以一个元素结尾的LIS长度 + 以它 ...

随机推荐

  1. maven压缩js css

    maven压缩<plugin> <!-- YUI Compressor Maven压缩插件 --> <groupId>net.alchim31.maven</ ...

  2. 一个方法教你认识ref(简单易懂)

    参数分为值类型和引用类型,当我们将一个值类型的参数进行传递到另一个方法的时候相当于,将这个变量进行复制到该方法进行操作,但是不会对该变量原始的值有影响. 但是有时候我们需要他有“影响”于是ref就出现 ...

  3. 云计算openstack共享组件(3)——消息队列rabbitmq

    队列(MQ)概念: MQ 全称为 Message Queue, 消息队列( MQ ) 是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链 ...

  4. linux-高并发与负载均衡-lvs-3种模型推导

    NAT地址转换:

  5. Django缓存机制--rest_framework中节流源码使用的就是django提供的缓存api

    一.配置缓存   https://www.jb51.net/article/124434.htm 二.缓存全站.页面.局部   三.自我控制的简单缓存API API 接口为:django.core.c ...

  6. openstack搭建之-horizon配置(14)

    一.ctrl控制节点安装horizon #安装软件yum install openstack-dashboard -y vim /etc/openstack-dashboard/local_setti ...

  7. SQL中ON和WHERE的区别

    SQL中ON和WHERE的区别 - 邃蓝星空 - 博客园 https://www.cnblogs.com/guanshan/articles/guan062.html

  8. NPOI “发现 中的部分内容有问题,是否要恢复此工作薄的内容?如果信任此工作薄的来源。。。”的问题的解决方法

    网上说的方法是调整Sheet可见和顺序:https://blog.csdn.net/hulihui/article/details/21196951 stackoverflow给出的解释是:单元格存储 ...

  9. P3389 【模板】高斯消元法

    高斯消元求解n元一次线性方程组的板子题: 先举个栗子: • 2x + y -   z =  8-----------① •-3x - y + 2z = -11---------② •-2x + y + ...

  10. elk每日清除30天索引脚本

      日常elk产生日志太多,故写个脚本放在定时任务,定时清理脚本 查询索引: curl -XGET 'http://127.0.0.1:9200/_cat/indices/?v'   删除索引: cu ...