[模板] K-D Tree
K-D Tree
K-D Tree可以看作二叉搜索树的高维推广, 它的第 \(k\) 层以所有点的第 \(k\) 维作为关键字对点做出划分.
为了保证划分均匀, 可以以第 \(k\) 维排名在中间的节点为划分节点. 这可以利用 std::nth_element 实现.
K-D Tree 支持单点修改. 为了保证 K-D Tree 的平衡性, 可以利用替罪羊树的思想, 在某个子树不平衡时重构这个子树.
同时, 对于每个点可以代表它所有子节点的 \([min(x_i), max(x_i)]\) 的一块超空间. 因此可以实现区间查询的操作.
根据 Wikipedia 的说法, 区间查询的最坏复杂度为单次 \(O(k \cdot n^{1-\frac 1k})\). (不会证)
其他操作
//to update
Code
//kdt
const int dk=2;
const db alp=0.75;
struct tp{
int v[dk];
int& operator[](int p){return v[p];}
const int& operator[](int p)const{return v[p];}
};
typedef const tp& ctp;
int key;
bool cmp1(ctp a,ctp b){return a[key]<b[key];}
bool eq(ctp a,ctp b){
rep(i,0,dk-1)if(a[i]!=b[i])return 0;
return 1;
}
struct tnd{tp po,mi,mx;int v,sum,sz,ch[2];}tree[nsz];
#define ls(p) tree[p].ch[0]
#define rs(p) tree[p].ch[1]
int rt=0,pt=0;
bool isbad(int p){return tree[ls(p)].sz>tree[p].sz*alp||tree[rs(p)].sz>tree[p].sz*alp;}
void pu(int p){
int l=ls(p),r=rs(p);
tree[p].sum=tree[l].sum+tree[r].sum+tree[p].v;
tree[p].sz=tree[l].sz+tree[r].sz+1;
rep(i,0,dk-1){
tree[p].mi[i]=min(tree[p].po[i],min((l?tree[l].mi[i]:(int)1e9),(r?tree[r].mi[i]:(int)1e9)));
tree[p].mx[i]=max(tree[p].po[i],max((l?tree[l].mx[i]:-1),(r?tree[r].mx[i]:-1)));
}
}
int li[nsz],pl=0;
bool cmp2(int a,int b){return cmp1(tree[a].po,tree[b].po);}
void pia(int rt){
if(ls(rt))pia(ls(rt));
li[++pl]=rt;
if(rs(rt))pia(rs(rt));
}
void build(int &rt,int rl,int rr,int k){
if(rl>rr){rt=0;return;}
int mid=(rl+rr)>>1;
key=k,nth_element(li+rl,li+mid,li+rr+1,cmp2);
rt=li[mid];
build(ls(rt),rl,mid-1,(k+1)%dk);
build(rs(rt),mid+1,rr,(k+1)%dk);
pu(rt);
}
void rebuild(int &rt,int k){
pl=0,pia(rt);
build(rt,1,pl,k);
}
void insert(tp p,int v,int &rt,int k){
if(rt==0){rt=++pt,tree[rt].po=p,tree[rt].v=v,pu(rt);return;}
if(eq(tree[rt].po,p)){tree[rt].v+=v,tree[rt].sum+=v;return;}
if(p[k]<=tree[rt].po[k])insert(p,v,ls(rt),(k+1)%dk);
else insert(p,v,rs(rt),(k+1)%dk);
pu(rt);
if(isbad(rt))rebuild(rt,k);
}
bool in(tp a1,tp a2,tp b1,tp b2){//(a1,a2) in (b1,b2)
rep(i,0,dk-1){
if(a1[i]<b1[i]||a2[i]>b2[i])return 0;
}
return 1;
}
bool out(tp a1,tp a2,tp b1,tp b2){//(a1,a2) completely out of (b1,b2)
rep(i,0,dk-1){
if(a2[i]<b1[i]||a1[i]>b2[i])return 1;
}
return 0;
}
int qu(tp a1,tp a2,int rt){
if(rt==0||out(a1,a2,tree[rt].mi,tree[rt].mx))return 0;
if(in(tree[rt].mi,tree[rt].mx,a1,a2))return tree[rt].sum;
int res=0;
if(in(tree[rt].po,tree[rt].po,a1,a2))res+=tree[rt].v;
res+=qu(a1,a2,ls(rt))+qu(a1,a2,rs(rt));
return res;
}
[模板] K-D Tree的更多相关文章
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷P3690 [模板] Link Cut Tree [LCT]
题目传送门 Link Cut Tree 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代 ...
- 洛谷 [P2483] [模板] k短路
人生中的第一道黑题... 其实就是k短路模板 #include <iostream> #include <cstdio> #include <cstring> #i ...
- [模板] k短路
简介 Dijkstra最短路+A*搜索. 先逆向求所有点到终点的最短路 \(dis[i]\). 定义估价函数 \(f[i] = d[i] + dis[i]\) , 其中 \(d[i]\) 表示当前起点 ...
- 【模板】Link-Cut Tree
#include<cstdio> #include<algorithm> #define N 500010 #define rg register #define ls (c[ ...
- 模板Link Cut Tree (动态树)
题目描述 给定N个点以及每个点的权值,要你处理接下来的M个操作.操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联 ...
- 洛谷.3690.[模板]Link Cut Tree(动态树)
题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...
- 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS
原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...
- Size Balanced Tree(SBT) 模板
首先是从二叉搜索树开始,一棵二叉搜索树的定义是: 1.这是一棵二叉树: 2.令x为二叉树中某个结点上表示的值,那么其左子树上所有结点的值都要不大于x,其右子树上所有结点的值都要不小于x. 由二叉搜索树 ...
- Size Balance Tree(SBT模板整理)
/* * tree[x].left 表示以 x 为节点的左儿子 * tree[x].right 表示以 x 为节点的右儿子 * tree[x].size 表示以 x 为根的节点的个数(大小) */ s ...
随机推荐
- jQuery 嵌套 event 会触发多次的原因
Html代码如下: <div id="cover"> <input type="button" id="inside" v ...
- create-react-app 修改项目端口号及ip,设置代理
项目相关配置,需要在package.json中配置
- AngularJS处理服务器端返回的JSON数据的格式问题
用ng的$http服务发起ajax请求,php返回的JSON数据格式要正确! 一开始我的php页面是这样返回数据的: if($result){ $oid = mysqli_insert_id($con ...
- angular懒加载
生成module和routing.module文件 {//路径 path: 'InfectionFillInComponent', loadChildren: './component/his/inf ...
- 开源ERP-成功案例分析(3)
Odoo用户概要 关于Odoo全球的用户,我们来看一些数据: Odoo目前全球有300万使用者 Odoo系统上每天新创建的数据库超过1000个 Odoo和Word.Excel.PowerPoint一样 ...
- vue中引用swiper轮播插件
有时候我们需要在vue中使用轮播组件,如果是在vue组件中引入第三方组件的话,最好通过npm安装,从而进行统一安装包管理. 申明:本文所使用的是vue.2x版本. 通过npm安装插件: npm ins ...
- 红米Note 5A完美卡刷开发版获得ROOT超级权限的方法
小米的手机不同手机型号一般情况官方论坛都提供两个不同的系统,大概可分为稳定版和开发版,稳定版没有提供root权限管理,开发版中就支持了root权限,在很多工作的时候我们需要使用的一些功能强大的APP, ...
- Android--解决图片保存到相册显示1970年1月1日 8:00的问题
import android.content.Context; import android.content.Intent; import android.database.Cursor; impor ...
- 使用VsCode自带的Emmet语法
新建html文件,保存之后,输入"!",按Tap(或Enter)键,自动生成HTML结构 标签只要直接输入标签名(不要输入<>),按Tap(或Enter)键自动生成完整 ...
- 【记录】Xmind8 Pro 激活
摘要 XMind 是一个全功能的思维导图和头脑风暴软件,为激发灵感和创意而生.作为一款有效提升工作和生活效率的生产力工具,受到全球百千万用户的青睐. [有能力请支持正版] 在xmin下载xmi ...