NumPy库实现矩阵计算
随着机器学习技术越来越向着整个社会进行推广,因此学好线性代数和Python当中的numpy库就相当重要了。我们应该知道numpy库的使用是sklearn库和opencv库的基础。主要用于矩阵的计算。当然,我们做做数模或者人工神经网络建模也可以使用MATLAB。不过现在Python才是现在的主流,因为Python可以用于服务器后台的实现,不仅仅看可以用于科研,还可以做出一些比较实用的一些东西。如果还想用于物联网等领域的话,则可以使用C++进行算法的实现。因为我们在嵌入式开发当中,一般使用的是linux系统进行嵌入式开发。而在嵌入式linux系统当中的话,使用C++进行代码的实现占用系统资源较少,在物联网硬件资源有限的条件下,可以跑出极为高效的程序。如实现摄像头人脸识别检测,人体检测,指纹识别等十分神奇的人工智能识别功能。
首先开始第一部分的教程
一,数组的实现
@requires_authorization
>>> from numpy import *
>>> a1=array([1,1,1]) #定义一个数组
>>> a2=array([2,2,2])
>>> a1+a2 #对于元素相加
array([3, 3, 3])
>>> a1*2 #乘一个数
array([2, 2, 2])
##
>>> a1=array([1,2,3])
>>> a1
array([1, 2, 3])
>>> a1**3 #表示对数组中的每个数做平方
array([ 1, 8, 27])
##取值,注意的是它是以0为开始坐标,不matlab不同
>>> a1[1]
2
##定义多维数组
>>> a3=array([[1,2,3],[4,5,6]])
>>> a3
array([[1, 2, 3],
[4, 5, 6]])
>>> a3[0] #取出第一行的数据
array([1, 2, 3])
>>> a3[0,0] #第一行第一个数据
1
>>> a3[0][0] #也可用这种方式
1
##数组点乘,相当于matlab点乘操作
>>> a1=array([1,2,3])
>>> a2=array([4,5,6])
>>> a1*a2
Numpy有许多的创建数组的函数:
import numpy as np
a = np.zeros((2,2)) # Create an array of all zeros
print a # Prints "[[ 0. 0.]
# [ 0. 0.]]"
b = np.ones((1,2)) # Create an array of all ones
print b # Prints "[[ 1. 1.]]"
c = np.full((2,2), 7) # Create a constant array
print c # Prints "[[ 7. 7.]
# [ 7. 7.]]"
d = np.eye(2) # Create a 2x2 identity matrix
print d # Prints "[[ 1. 0.]
# [ 0. 1.]]"
e = np.random.random((2,2)) # Create an array filled with random values
print e # Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"
二,矩阵
#创建矩阵
>>> m=mat([1,2,3])
>>> m
matrix([[1, 2, 3]])
#取值
>>> m[0] #取一行
matrix([[1, 2, 3]])
>>> m[0,1] #第一行,第2个数据
2
>>> m[0][1] #注意不能像数组那样取值了
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__
out = N.ndarray.__getitem__(self, index)
IndexError: index 1 is out of bounds for axis 0 with size 1
#将Python的列表转换成NumPy的矩阵
>>> list=[1,2,3]
>>> mat(list)
matrix([[1, 2, 3]])
#矩阵相乘
>>> m1=mat([1,2,3]) #1行3列
>>> m2=mat([4,5,6])
>>> m1*m2.T #注意左列与右行相等 m2.T为转置操作
matrix([[32]])
>>> multiply(m1,m2) #执行点乘操作,要使用函数,特别注意
matrix([[ 4, 10, 18]])
#排序
>>> m=mat([[2,5,1],[4,6,2]]) #创建2行3列矩阵
>>> m
matrix([[2, 5, 1],
[4, 6, 2]])
>>> m.sort() #对每一行进行排序
>>> m
matrix([[1, 2, 5],
[2, 4, 6]])
>>> m.shape #获得矩阵的行列数
(2, 3)
>>> m.shape[0] #获得矩阵的行数
2
>>> m.shape[1] #获得矩阵的列数
3
#索引取值
>>> m[1,:] #取得第一行的所有元素
matrix([[2, 4, 6]])
>>> m[1,0:1] #第一行第0个元素,注意左闭右开
matrix([[2]])
>>> m[1,0:3]
matrix([[2, 4, 6]])
>>> m[1,0:2]
matrix([[2, 4]])
三,扩展矩阵实现函数tile()
>>>x=mat([0,0,0])
>>> x
matrix([[0, 0, 0]])
>>> tile(x,(3,1)) #即将x扩展3个,j=1,表示其列数不变
matrix([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> tile(x,(2,2)) #x扩展2次,j=2,横向扩展
matrix([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
差不多也就这样了,如果学完numpy库的使用,那您运用计算机进行矩阵的计算能力一定会大大提升的。
NumPy库实现矩阵计算的更多相关文章
- 安装numpy库
1.先安装pip: 下载地址:http://pypi.python.org/pypi/pip#downloads 下载pip-8.1.2.tar.gz(md5,pgp)完成之后,解压到一个文件夹,cm ...
- Python的numpy库下的几个小函数的用法
numpy库是Python进行数据分析和矩阵运算的一个非常重要的库,可以说numpy让Python有了matlab的味道 本文主要介绍几个numpy库下的小函数. 1.mat函数 mat函数可以将目标 ...
- numpy库:常用基本
numpy 本文主要列出numpy模块常用方法 大部分内容来源于网络,而后经过自己的一点思考和总结,如果有侵权,请联系我 我是一名初学者,有哪些地方有错误请留言,我会及时更改的 创建矩阵(采用ndar ...
- Python数据分析numpy库
1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...
- 数据分析与展示——NumPy库入门
这是我学习北京理工大学嵩天老师的<Python数据分析与展示>课程的笔记.嵩老师的课程重点突出.层次分明,在这里特别感谢嵩老师的精彩讲解. NumPy库入门 数据的维度 维度是一组数据的组 ...
- 初识NumPy库-基本操作
ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...
- numpy库常用基本操作
NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数 ...
- Numpy库(个人学习笔记)
一样,咱的计算机还是得先拥有Python,并且安装了Numpy库.有疑问的话可以看这里呦~~~~ 下面开讲: NumPy的主要对象是齐次多维数组.它是一个元素表(通常是数字),并且都是相同类型,由正整 ...
- Numpy库的下载及安装(吐血总结)
Python很火,我也下了个来耍耍一阵子.可是渐渐地,我已经不满足于它的基本库了,我把目光转到了Numpy~~~~~ 然而想法总是比现实容易,因为我之前下的是Python3.3.x,所有没有自带pip ...
随机推荐
- 结对-(first)
代码地址 https://github.com/CountZ3/bank.git 代码思想 允许进程动态地申请资源, 系统在每次实施资源分配之前,先计算资源分配的安全性, 若此次资源分配安全(即资源分 ...
- 总结UIViewController的view在有navBar和tabBar影响下布局区域的问题
影响 View 布局区域的有以下三个属性: self.edgesForExtendedLayout (影响View布局区域的主要属性) self.navigationController.naviga ...
- iOS开发之Dictionary与NSData互转
1.将NSData转换成Dictionary /** 将二进制数据转换成字典*/ + (NSDictionary *)dictionaryForJsonData:(NSData *)jsonData ...
- SpringMVC源码分析-400异常处理流程及解决方法
本文涉及SpringMVC异常处理体系源码分析,SpringMVC异常处理相关类的设计模式,实际工作中异常处理的实践. 问题场景 假设我们的SpringMVC应用中有如下控制器: 代码示例-1 @Re ...
- 关键字static
原文出处:http://cmsblogs.com/ 『chenssy』 一. static代表着什么 在Java中并不存在全局变量的概念,但是我们可以通过static来实现一个“伪全局”的概念,在Ja ...
- RXJS Observable的冷,热和Subject
一.Observable的冷和热 Observable 热:直播.所有的观察者,无论进来的早还是晚,看到的是同样内容的同样进度,订阅的时候得到的都是最新时刻发送的值. Observable 冷:点播. ...
- B. Menci 的序列
题解: 首先subtask1直接状压暴力就好 subtask2我的处理和题解不太一样 仍然正向考虑 设i的时候有最高位为j,那么这个时候数一定越大越好(这个比较好yy) 然后$f[i][j]$搞个高精 ...
- kafka 客户端 producer 配置参数
属性 描述 类型 默认值 bootstrap.servers 用于建立与kafka集群的连接,这个list仅仅影响用于初始化的hosts,来发现全部的servers.格式:host1:port1,ho ...
- Hadoop优化
一.影响MR程序效率的因素 1.计算机性能: CPU.内存.磁盘.网络, 计算机的性能会影响MR程序的速度与效率 2.I/O方面 1)数据倾斜(代码优化) 2)map和reduce数量设置不合理(通过 ...
- quartz之CronExpression表达式
一个cron表达式有至少6个(也可能7个)有空格分隔的时间元素.按顺序依次为1.秒(~).分钟(~).小时(~).天(月)(~,但是你需要考虑你月的天数).月(~).天(星期)(~ =SUN 或 SU ...