sklearn pipeline
sklearn.pipeline
pipeline的目的将许多算法模型串联起来,比如将特征提取、归一化、分类组织在一起形成一个典型的机器学习问题工作流。
优点:
1.直接调用fit和predict方法来对pipeline中的所有算法模型进行训练和预测
2.可以结合grid search对参数进行选择。
1.DictVectorizer、DecisionTreeClassifier——>pipeline模型
import pandas as pd
import numpy as np
titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
titanic.head()
titanic.info()
X = titanic[['pclass','age','sex']]
y = titanic['survived']
X['age'].fillna(X['age'].mean(),inplace=True)
X.info()
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=33)
X_train = X_train.to_dict(orient='record')
X_test = X_test.to_dict(orient='record')
#将非数值型数据转换为数值型数据
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.pipeline import Pipeline
'''
vec = DictVectorizer()
vec.fit_transform(data)
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X_train,y_train)
clf.predict(X_test)
'''
clf = Pipeline([('vecd',DictVectorizer(sparse=False)),('dtc',DecisionTreeClassifier())])
vec = DictVectorizer(sparse=False)
clf.fit(X_train,y_train)
y_predict = clf.predict(X_test)
from sklearn.metrics import classification_report
print (clf.score(X_test,y_test))
print(classification_report(y_predict,y_test,target_names=['died','survivied']))
2.结合GridSearch进行参数调优
from sklearn.datasets import fetch_20newsgroups
import numpy as np
news = fetch_20newsgroups(subset='all')
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(news.data[:3000],news.target[:3000],test_size=0.25,random_state=33)
from sklearn.feature_extraction.text import TfidfVectorizer
vec = TfidfVectorizer()
X_count_train = vec.fit_transform(X_train)
X_count_test = vec.transform(X_test)
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
#使用pipeline简化系统搭建流程,将文本抽取与分类器模型串联起来
clf = Pipeline([
('vect',TfidfVectorizer(stop_words='english')),('svc',SVC())
])
# 注意,这里经pipeline进行特征处理、SVC模型训练之后,得到的直接就是训练好的分类器clf
parameters = {
'svc__gamma':np.logspace(-2,1,4),
'svc__C':np.logspace(-1,1,3),
'vect__analyzer':['word']
}
#n_jobs=-1代表使用计算机的全部CPU
from sklearn.grid_search import GridSearchCV
gs = GridSearchCV(clf,parameters,verbose=2,refit=True,cv=3,n_jobs=-1)
%time _=gs.fit(X_train,y_train)
print (gs.best_params_,gs.best_score_)
print (gs.score(X_test,y_test))
parameters变量里面的key都有一个前缀,不难发现,这个前缀其实就是在Pipeline中定义的操作名。二者相结合,是我们的代码变得十分简洁。
sklearn pipeline的更多相关文章
- sklearn Model-selection + Pipeline
1 GridSearch import numpy as np from sklearn.datasets import load_digits from sklearn.ensemble impor ...
- sklearn中的Pipeline
在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA ...
- sklearn 中的 Pipeline 机制 和FeatureUnion
一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...
- sklearn 中的 Pipeline 机制
转载自:https://blog.csdn.net/lanchunhui/article/details/50521648 from sklearn.pipeline import Pipeline ...
- 利用sklearn的Pipeline简化建模过程
很多框架都会提供一种Pipeline的机制,通过封装一系列操作的流程,调用时按计划执行即可.比如netty中有ChannelPipeline,TensorFlow的计算图也是如此. 下面简要介绍skl ...
- sklearn中pipeline的用法和FeatureUnion
一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...
- 机器学习- Sklearn (交叉验证和Pipeline)
前面一节咱们已经介绍了决策树的原理已经在sklearn中的应用.那么这里还有两个数据处理和sklearn应用中的小知识点咱们还没有讲,但是在实践中却会经常要用到的,那就是交叉验证cross_valid ...
- 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline
多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...
- 使用sklearn优雅地进行数据挖掘【转】
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...
随机推荐
- 1.2 JAVA多线程实现
线程和进程 进程:是执行中一段程序, 进程是系统进行资源分配和调度的一个独立单位. 线程:比进程更小的能独立运行的基本单位,单个进程中执行中每个任务就是一个线程.线程是进程中执行运算的最小单位. Th ...
- JS 函数参数 及 函数数组
<script> function a(){ alert("a"); } function b(){ alert("b"); } var arr = ...
- 活代码LINQ——08
一.模块代码 ' Fig. 9.6: ListCollection.vb ' Generic List collection demonstration. Module ListCollection ...
- Apache安装,亲测成功
工作需要,为一台空白服务器安装apache,小白程序员,搞了一个下午,惭愧! 工具需要,也可以自己到apache下载 http://httpd.apache.org/download.cgi 遇到的b ...
- windows openssl-1.1.1 编译静态库和动态库
一下为windows上安装过程 1.下载 openssl-1.1.0.tar.gz 2.安装 ActivePerl, 可以到http://www.activestate.com/activeperl/ ...
- JAVA第3,4课(内容合并)
JAVA 第三课 代码执行顺序
- Js函数基本介绍
1. 函数的创建 在JavaScript里面创建函数的关键字为function 函数名:就是在我们调用函数的时候需要书写的标识符 形参:全称为形式参数,调用函数的时候,这个函数所需要的参数是什么 实参 ...
- sprigmvc 传值jsp页面
https://blog.csdn.net/qq_41357573/article/details/84675535#如何将controller层值传递到jsp页面
- Spring MVC流程
这是spring mvc框架结构图,图片是很早在网上撸过来的,具体在哪忘了…… 早期学习Springmvc 并没有具体了解过,只知道这样用很爽,最近了解下基本结构流程及组件所在…… 执行流程 Spri ...
- django之信号
Django中提供了“信号调度”,用于在框架执行操作时解耦.通俗来讲,就是一些动作发生的时候,信号允许特定的发送者去提醒一些接受者. 1.Django内置信号 Model signals pr ...