CF999E Reachability from the Capital来自首都的可达性
题目大意:
有n个节点m条边,边都是单向的,请你添加最少的边使得起点s到其他与其他每一个点之间都能互相到达
这题一看就是一个缩点啊
其实对于原有的m条边相连的一些点,如果之前他们已经形成了强连通分量(scc),那么它们之前就可以相互到达(不用修路),对于这些点我们可以把它们“缩”成一个“点”,这其实就是Tarjian缩点的思想
其实luogu里还有很多缩点的模板题,自己去找找吧,都不难的
那么如果你会了缩点,这个题只要缩完点之后统计一下入度为0的点就行了(让强连通分量之间连边)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
const int inf=1e9+;
inline int read()
{
int p=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){p=p*+c-'';c=getchar();}
return f*p;}
const int maxn=;
const int maxm=;
struct Edge
{
int next,from,to;
}p[maxm];
struct point
{
int low,dnf,vis,fa,in;
}A[maxn];
int n,m,cnt,sum_scc,tot,S;
int Stack[maxn],top,ans,head[maxm];
inline void add_edge(int x,int y)//加边
{
cnt++;
p[cnt].from=head[x];
head[x]=cnt;
p[cnt].next=x;
p[cnt].to=y;
}
inline void Tarjian(int x)//Tarjian缩点
{
A[x].dnf=A[x].low=++tot;
A[x].vis=,Stack[++top]=x;
for(int i=head[x];i;i=p[i].from)
{
int y=p[i].to;
if(!A[y].dnf)
Tarjian(y),A[x].low=min(A[x].low,A[y].low);
else if(A[y].vis)
A[x].low=min(A[x].low,A[y].dnf);
}
if(A[x].dnf==A[x].low)
{
int y;
sum_scc++;
while(y=Stack[top--])
{
A[y].vis=;
A[y].fa=sum_scc;
if(x==y)break;
}
}
}
int main()
{
n=read(),m=read(),S=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read();
add_edge(x,y);
}
for(int i=;i<=n;i++)
if(!A[i].dnf)Tarjian(i);
for(int i=;i<=m;i++)//统计入度
{
int x=A[p[i].next].fa,y=A[p[i].to].fa;
if(x!=y)A[y].in++;
}
for(int i=;i<=sum_scc;i++)
//没有入度的scc个数++
if(!A[i].in)ans++;
if(!A[A[S].fa].in)ans--;
//特判,起点所在的scc如果没有入度那么答案-1
printf("%d\n",ans);
return ;
}
CF999E Reachability from the Capital来自首都的可达性的更多相关文章
- [CF999E]Reachability from the Capital
题目大意:有一个$n$个点$m$条边的有向图,起点$S$,要求你添加最少的边使得$S$可以到达所有点 题解:缩点,答案就是没有入边的强连通分量个数,注意,如果起点$S$所在的强连通块没有入边则不计入答 ...
- E - Reachability from the Capital
E - Reachability from the Capital CodeForces - 999E 题目链接:https://vjudge.net/contest/236513#problem/ ...
- E. Reachability from the Capital dfs暴力
E. Reachability from the Capital 这个题目就是给你一个有向图,给你起点,问增加多少条边让这个图变成一个连通图. 这个因为n只有5000m只有5000 所以可以暴力枚举这 ...
- Reachability from the Capital
题目描述 There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in ...
- Reachability from the Capital CodeForces - 999E (强连通)
There are nn cities and mm roads in Berland. Each road connects a pair of cities. The roads in Berla ...
- Reachability from the Capital(Codeforces Round #490 (Div. 3)+tarjan有向图缩点)
题目链接:http://codeforces.com/contest/999/problem/E 题目: 题意:给你n个城市,m条单向边,问你需要加多少条边才能使得从首都s出发能到达任意一个城市. 思 ...
- Reachability from the Capital CodeForces - 999E(强连通分量 缩点 入度为0的点)
题意: 问至少加几条边 能使点s可以到达所有的点 解析: 无向图的连通分量意义就是 在这个连通分量里 没两个点之间至少有一条可以相互到达的路径 所以 我们符合这种关系的点放在一起, 由s向这些点的任 ...
- E. Reachability from the Capital(tarjan+dfs)
求联通分量个数,在dfs一次 #include <iostream> #include <algorithm> #include <cstring> #includ ...
- codeforces#999 E. Reachability from the Capital(图论加边)
题目链接: https://codeforces.com/contest/999/problem/E 题意: 在有向图中加边,让$S$点可以到达所有点 数据范围: $ 1 \leq n \leq 50 ...
随机推荐
- gateway 配置
server: port: spring: application: name: api-gateway eureka: client: service-url: defaultZone: http: ...
- Spring LazyInitializatoinException
今天做project创建了一个新的类A,这个新类包含了一个另外一个类B的Set.B类包含了另外一个C类的集合... public class A{ @Id int id; @OneToMany(fet ...
- oralce执行计划
看懂Oracle执行计划 最近一直在跟Oracle打交道,从最初的一脸懵逼到现在的略有所知,也来总结一下自己最近所学,不定时更新ing… 一:什么是Oracle执行计划? 执行计划是一条查询语句在 ...
- 介绍一下Spring Cloud简介
Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线).分布式系统的协调导致了样板模式, 使用Spring Clo ...
- servlet操作本地文件汇总: 判断文件是否存在;文件重命名;文件复制; 获取文件属性信息,转成Json对象; 获取指定类型的文件; 查找替换.txt中的文本
package servlet; import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; ...
- Python基础(条件判断,循环,占位符等)
Python 自动化 系统开发用的语言和自动化脚本可以不同 学习peython可用于: 网路爬虫,数据分,web开发,人工智能,自动化运维,自动化测试,嵌入式,黑客 第三方库比较全 脚本语言:功能单一 ...
- SharePoint Framework 在web部件中使用已存在的JavaScript库 - 捆绑打包和外部引用
博客地址:http://blog.csdn.net/FoxDave 在构建SPFx客户端web部件时,你可以使用公网已有的JavaScript库来构建强大的解决方案.但是在使用的时候你需要考虑你引用的 ...
- 剑指offer用位运算实现两个数相加,及python相关的位操作
题目:写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. 代码: # -*- coding:utf-8 -*-class Solution: def Add(self ...
- python爬虫基础_requests和bs4
这些都是笔记,还缺少详细整理,后续会更新. 下面这种方式,属于入门阶段,手动成分比较多. 首先安装必要组件: pip3 install requests pip3 install beautifuls ...
- docker查看挂载目录Volume
使用docker inspect命令查看container的volume信息,按照书本上面敲,发现一直报错: 使用命令如下: sudo docker inspect --format "{{ ...