目录

前言

今天讲的是,有关sympy的微积分部分的知识。

对应官网的知识:Calculus

官网教程

https://docs.sympy.org/latest/tutorial/calculus.html

(一)求导数-diff()

1.一阶求导-diff()

(1)说明:

语法是:diff(expr,x)

(2)源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = cos(x) expr2 = exp(x**2) # 求导
r1 = diff(expr1, x)
r2 = diff(expr2, x) print("r1:", r1)
print("r2:", r2)

(3)输出:

\(\cos(x)\) --> \(-\sin(x)\)

\(e^{x^2}\) --> \(2xe^{x^2}\)

2.多阶求导-diff()

(1)说明:

多阶求导同样的使用diff(),其有两种形式

  1. 带参数中,添加几个x,就是对x的几次求导。diff(expr, x, x,x……)
  2. 用数字来控制所求的阶数:diff(expr, x, n)

(2)源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = x**4 # 第一种形式多阶求导
r1 = diff(expr1, x)
r2 = diff(expr1, x, x)
r3 = diff(expr1, x, x, x) print("="*30)
print(r1)
print(r2)
print(r3) # 第二种形式多阶求导
r4 = diff(expr1, x, 1)
r5 = diff(expr1, x, 2)
r6 = diff(expr1, x, 3) print("="*30)
print(r4)
print(r5)
print(r6)

(3)输出:

\(x^4\) --> \(24x\)

3.求偏导数-diff()

(1)说明:

diff()也可以单独对一个变量求导,这便是偏导数。

(2)源代码:

from sympy import *

# 初始化
x, y, z = symbols('x y z') # 表达式
expr1 = exp(x*y*z) # 求导
r1 = diff(expr1, x, y, y, z, z, z, z)
r2 = diff(expr1, x, 1, y, 2, z, 4) print("r1:", r1)
print("r2:", r2) print(latex(r1))
print(latex(r2))

(3)输出:

\(e^{xyz}\) --> \(x^{3} y^{2} \left(x^{3} y^{3} z^{3} + 14 x^{2} y^{2} z^{2} + 52 x y z + 48\right) e^{x y z}\)

(二)求积分-integrate()

(1)说明:

求积分有三种形式,并且都用的是integrate()方法

  1. 求不定积分:integrate(expr, var)
  2. 求定积分:integrate(expr, (var, min, max))
  3. 求多重积分:integrate(expr, (var1, min, max),(var2,min,max))

(2)源代码:

from sympy import *

# 初始化
x, y = symbols('x y') # 表达式
expr1 = cos(x)
expr2 = exp(-x)
expr3 = exp(-x**2-y**2) # 求不定积分
r1 = integrate(expr1, x) # 求定积分
r2 = integrate(expr2, (x, 0, oo)) # 求多重积分
r3 = integrate(expr3, (x, -oo, oo), (y, -oo, oo)) print("r1:", r1)
print("r2:", r2)
print("r3:", r3)

(3)输出:

\(\cos{\left (x \right )}\)-->\(\sin{\left (x \right )}\)

\(\int_{0}^\infty{e^{- x}dx}​\)-->\(1​\)

\(\int_{-\infty}^\infty \int_{-\infty}^\infty e^{- x^{2} - y^{2}}dxdy\)-->\(\pi\)

(三)求极限-limit()

(1)说明:

求极限使用limit(),其有下两种使用方法:

  1. 趋进某个点的极限:limit(expr, var, doit)
  2. 从侧边趋进某个值的极限:limit(expr, var,doit, "+") (左侧趋进同理)

注:sympy里,不可以使用无穷的趋进。

(2)源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = sin(x)/x
expr2 = 1/x # 求趋于某个值的极限
r1 = limit(expr1, x, 0) # 正向趋进
r2 = limit(expr2, x, 0, '+') # 负向趋进
r3 = limit(expr2, x, 0, '-') print(r1)
print(r2)
print(r3)

(3)输出:

\(\lim_{x \to 0}\sin(x)/x\)-->\(1\)

\(\lim_{x \to 0^+}​\)-->\(\infty​\)

\(\lim_{x \to 0^-}\)-->\(-\infty​\)

(四)级数展开-series()

1.说明:

级数展开请使用:series(expr, x0, xn),使用.removeO()去除尾数。

2.源代码:

from sympy import *

# 初始化
x = symbols('x') # 表达式
expr1 = exp(sin(x)) # 级数展开
r1 = expr1.series(x, 0, 6) # 去除尾数
r2 = expr1.series(x, 0, 6).removeO() print(r1)
print(r2)

3.输出:

\(e^{\sin(x)}​\)-->\(1 + x + \frac{x^{2}}{2} - \frac{x^{4}}{8} - \frac{x^{5}}{15} + O\left(x^{6}\right)​\)

\(e^{\sin(x)}\)-->\(- \frac{x^{5}}{15} - \frac{x^{4}}{8} + \frac{x^{2}}{2} + x + 1​\)

作者:Mark

日期:2019/03/17 周日

5.4Python数据处理篇之Sympy系列(四)---微积分的更多相关文章

  1. 4.4Python数据处理篇之Matplotlib系列(四)---plt.bar()与plt.barh条形图

    目录 目录 前言 (一)竖值条形图 (二)水平条形图 1.使用bar()绘制: 2.使用barh()绘制: (三)复杂的条形图 1.并列条形图: 2.叠加条形图: 3.添加图例于数据标签的条形图: 目 ...

  2. 3.4Python数据处理篇之Numpy系列(四)---ndarray 数组的运算

    目录 目录 (一)数组与标量的运算 1.说明: 2.实例: (二)元素级的运算(一元函数) 1.说明: 2.实例: (三)数组级的运算(二元函数) 1.说明: 2.实例: 目录 1.数组与标量的运算 ...

  3. 5.6Python数据处理篇之Sympy系列(六)---矩阵的操作

    目录 目录 前言 (一)矩阵的创建-Matrix() 1.说明: 2.源代码: 3.输出: (二)常用的构造矩阵 1.说明: 2.源代码: 3.输出: (三)基本操作 1.说明: 2.源代码: 3.输 ...

  4. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  5. 5.3Python数据处理篇之Sympy系列(三)---简化操作

    目录 5.3简化操作 目录 前言 (一)有理数与多项式的简化 1.最简化-simplify() 2.展开-expand() 3.提公因式-factor() 4.合并同类项-ceiling() 5.简化 ...

  6. 5.2Python数据处理篇之Sympy系列(二)---Sympy的基本操作

    目录 目录 前言 (一)符号的初始化与输出设置-symbol() symbols() latex() 1.作用: 2.操作: (二)替换符号-subs(old,new) 1.说明: 2.源代码: 3. ...

  7. 5.1Python数据处理篇之Sympy系列(一)---Sympy的大体认识

    目录 目录 前言 目录 前言 sympy是python一个强大的数学符号运算第三方库,具体的功能请看下面操作 官网教程: https://docs.sympy.org/latest/tutorial/ ...

  8. 4.14Python数据处理篇之Matplotlib系列(十四)---动态图的绘制

    目录 目录 前言 (一)需求分析 (二)随机数的动态图 1.思路分析: 2.源代码: 2.输出效果: 目录 前言 学习matplotlib已经到了尾声,没有必要再继续深究下去了,现今只是学了一些基础的 ...

  9. 4.13Python数据处理篇之Matplotlib系列(十三)---轴的设置

    目录 目录 前言 (一)设置轴的范围 1.同时对于x,y轴设置 2.分别对与x,y轴的设置 (二)设置刻度的大小 1.普通的刻度设置 2.添加文本的刻度设置 3.主副刻度的设置 (三)设置轴的数据 1 ...

随机推荐

  1. 客户端通过Feign发起请求 服务端通过request取 json对象

    @RestController @RequestMapping(value = "test") public class TestServer { @RequestMapping( ...

  2. Eclipse debug Source not found

    点击打开链接最近开始慢慢转向idea开发了,但是因为旧项目是在eclipse里面.就没有在idea导入,所以旧项目就用eclipse,新项目就用idea.然而最近几天eclipse似乎不干了,每次de ...

  3. 【Scala篇】--Scala初始与基础

    一.前述 Scala是基于JVM的另一个语言. Scala官网6个特征. 1).Java和scala可以混编 2).类型推测(自动推测类型) 3).并发和分布式(Actor) 4).特质,特征(类似j ...

  4. springboot+mybatis+dubbo+aop日志第三篇

    AOP称为面向切面编程,在程序开发中主要用来解决一些系统层面上的问题,比如日志,事务,权限等等. Spring AOP模块提供截取拦截应用程序的拦截器,例如,当执行方法时,可以在执行方法之前或之后添加 ...

  5. jumpserver篇--安装

    参考:https://github.com/jumpserver/jumpserver/wiki/%E5%AE%89%E8%A3%85%E5%9B%BE%E8%A7%A3 服务器环境: ip:192. ...

  6. js内存深入学习(一)

    一. 内存空间储存 某些情况下,调用堆栈中函数调用的数量超出了调用堆栈的实际大小,浏览器会抛出一个错误终止运行.这个就涉及到内存问题了. 1. 数据结构类型 栈: 后进先出(LIFO)的数据结构  堆 ...

  7. PHP Composer 依赖管理的用法

    1:下载 1.1:方法一: 通过PHP来安装 cd G:\web\es6 curl -sS https://getcomposer.org/installer | php #这个命令会下载compos ...

  8. STM32-FreeRTOS快速学习之总结1

    1. 基础知识注意:在RTOS中是优先值越高则优先级越高(和ucos/linux的相反) 在移植的时候,主要裁剪FreeRTOS/Source/portable文件夹,该文件夹用来针对不同MCU做的一 ...

  9. 数据结构(java版)学习笔记(一)——线性表

    一.线性表的定义 线性表是n(n>=0)个具有相同特性的数据元素的有限序列. 线性表是最简单.最常用的一种数据结构 线性表属于线性结构的一种 如果一个数据元素序列满足: (1)除第一个和最后一个 ...

  10. JavaScript 包装对象

    万物皆对象 在JavaScript里,万物皆对象.但是某些对象有别于其它对象,我们可以用 typeof 来获取一个对象的类型,它总是返回一个字符串. typeof 123; // 'number' t ...