今天开始读一篇论文:leveraging linguistic structure for open domain information extraction

于是……重新复习了很多句法分析的内容,转载一个关键词的解释(?https://blog.csdn.net/lihaitao000/article/details/51812618

 

*****计算机语言学家罗宾森总结了依存语法的四条定理*******

1、一个句子中存在一个成分称之为根(root),这个成分不依赖于其它成分。

2、其它成分直接依存于某一成分;

3、任何一个成分都不能依存与两个或两个以上的成分;

4、如果A成分直接依存于B成分,而C成分在句中位于A和B之间,那么C或者直接依存于B,或者直接依存于A和B之间的某一成分;

5、中心成分左右两面的其它成分相互不发生关系。

******符号解释*******

使用斯坦福句法分析器做依存句法分析可以输出句子的依存关系,Stanford parser基本上是一个词汇化的概率上下文无关语法分析器,同时也使用了依存分析。

ROOT:要处理文本的语句

IP:简单从句
NP:名词短语
VP:动词短语
PU:断句符,通常是句号、问号、感叹号等标点符号
LCP:方位词短语
PP:介词短语
CP:由‘的’构成的表示修饰性关系的短语
DNP:由‘的’构成的表示所属关系的短语
ADVP:副词短语
ADJP:形容词短语
DP:限定词短语
QP:量词短语
NN:常用名词
NR:固有名词
NT:时间名词
PN:代词
VV:动词
VC:是
CC:表示连词
VE:有
VA:表语形容词
AS:内容标记(如:了)
VRD:动补复合词
CD: 表示基数词
DT: determiner 表示限定词
EX: existential there 存在句
FW: foreign word 外来词
IN: preposition or conjunction, subordinating 介词或从属连词
JJ: adjective or numeral, ordinal 形容词或序数词
JJR: adjective, comparative 形容词比较级
JJS: adjective, superlative 形容词最高级
LS: list item marker 列表标识
MD: modal auxiliary 情态助动词
PDT: pre-determiner 前位限定词
POS: genitive marker 所有格标记
PRP: pronoun, personal 人称代词
RB: adverb 副词
RBR: adverb, comparative 副词比较级
RBS: adverb, superlative 副词最高级
RP: particle 小品词 
SYM: symbol 符号
TO:”to” as preposition or infinitive marker 作为介词或不定式标记 
WDT: WH-determiner WH限定词
WP: WH-pronoun WH代词
WP$: WH-pronoun, possessive WH所有格代词
WRB:Wh-adverb WH副词
 
关系表示
abbrev: abbreviation modifier,缩写
acomp: adjectival complement,形容词的补充;
advcl : adverbial clause modifier,状语从句修饰词
advmod: adverbial modifier状语
agent: agent,代理,一般有by的时候会出现这个
amod: adjectival modifier形容词
appos: appositional modifier,同位词
attr: attributive,属性
aux: auxiliary,非主要动词和助词,如BE,HAVE SHOULD/COULD等到
auxpass: passive auxiliary 被动词
cc: coordination,并列关系,一般取第一个词
ccomp: clausal complement从句补充
complm: complementizer,引导从句的词好重聚中的主要动词
conj : conjunct,连接两个并列的词。
cop: copula。系动词(如be,seem,appear等),(命题主词与谓词间的)连系
csubj : clausal subject,从主关系
csubjpass: clausal passive subject 主从被动关系
dep: dependent依赖关系
det: determiner决定词,如冠词等
dobj : direct object直接宾语
expl: expletive,主要是抓取there
infmod: infinitival modifier,动词不定式
iobj : indirect object,非直接宾语,也就是所以的间接宾语;
mark: marker,主要出现在有“that” or “whether”“because”, “when”,
mwe: multi-word expression,多个词的表示
neg: negation modifier否定词
nn: noun compound modifier名词组合形式
npadvmod: noun phrase as adverbial modifier名词作状语
nsubj : nominal subject,名词主语
nsubjpass: passive nominal subject,被动的名词主语
num: numeric modifier,数值修饰
number: element of compound number,组合数字
parataxis: parataxis: parataxis,并列关系
partmod: participial modifier动词形式的修饰
pcomp: prepositional complement,介词补充
pobj : object of a preposition,介词的宾语
poss: possession modifier,所有形式,所有格,所属
possessive: possessive modifier,这个表示所有者和那个’S的关系
preconj : preconjunct,常常是出现在 “either”, “both”, “neither”的情况下
predet: predeterminer,前缀决定,常常是表示所有
prep: prepositional modifier
prepc: prepositional clausal modifier
prt: phrasal verb particle,动词短语
punct: punctuation,这个很少见,但是保留下来了,结果当中不会出现这个
purpcl : purpose clause modifier,目的从句
quantmod: quantifier phrase modifier,数量短语
rcmod: relative clause modifier相关关系
ref : referent,指示物,指代
rel : relative
root: root,最重要的词,从它开始,根节点
tmod: temporal modifier
xcomp: open clausal complement
xsubj : controlling subject 掌控者

中心语为谓词
  subj — 主语
 nsubj — 名词性主语(nominal subject) (同步,建设)
   top — 主题(topic) (是,建筑)
npsubj — 被动型主语(nominal passive subject),专指由“被”引导的被动句中的主语,一般是谓词语义上的受事 (称作,镍)
 csubj — 从句主语(clausal subject),中文不存在
 xsubj — x主语,一般是一个主语下面含多个从句 (完善,有些)

中心语为谓词或介词   
   obj — 宾语
  dobj — 直接宾语 (颁布,文件)
  iobj — 间接宾语(indirect object),基本不存在
 range — 间接宾语为数量词,又称为与格 (成交,元)
  pobj — 介词宾语 (根据,要求)
  lobj — 时间介词 (来,近年)

中心语为谓词
  comp — 补语
 ccomp — 从句补语,一般由两个动词构成,中心语引导后一个动词所在的从句(IP) (出现,纳入)
 xcomp — x从句补语(xclausal complement),不存在   
 acomp — 形容词补语(adjectival complement)
 tcomp — 时间补语(temporal complement) (遇到,以前)
lccomp — 位置补语(localizer complement) (占,以上)
       — 结果补语(resultative complement)

中心语为名词
   mod — 修饰语(modifier)
  pass — 被动修饰(passive)
  tmod — 时间修饰(temporal modifier)
 rcmod — 关系从句修饰(relative clause modifier) (问题,遇到)
 numod — 数量修饰(numeric modifier) (规定,若干)
ornmod — 序数修饰(numeric modifier)
   clf — 类别修饰(classifier modifier) (文件,件)
  nmod — 复合名词修饰(noun compound modifier) (浦东,上海)
  amod — 形容词修饰(adjetive modifier) (情况,新)
advmod — 副词修饰(adverbial modifier) (做到,基本)
  vmod — 动词修饰(verb modifier,participle modifier)
prnmod — 插入词修饰(parenthetical modifier)
   neg — 不定修饰(negative modifier) (遇到,不)
   det — 限定词修饰(determiner modifier) (活动,这些)
 possm — 所属标记(possessive marker),NP
  poss — 所属修饰(possessive modifier),NP
  dvpm — DVP标记(dvp marker),DVP (简单,的)
dvpmod — DVP修饰(dvp modifier),DVP (采取,简单)
  assm — 关联标记(associative marker),DNP (开发,的)
assmod — 关联修饰(associative modifier),NP|QP (教训,特区)
  prep — 介词修饰(prepositional modifier) NP|VP|IP(采取,对)
 clmod — 从句修饰(clause modifier) (因为,开始)
 plmod — 介词性地点修饰(prepositional localizer modifier) (在,上)
   asp — 时态标词(aspect marker) (做到,了)
partmod– 分词修饰(participial modifier) 不存在
   etc — 等关系(etc) (办法,等)

中心语为实词
  conj — 联合(conjunct)
   cop — 系动(copula) 双指助动词????
    cc — 连接(coordination),指中心词与连词 (开发,与)

其它
  attr — 属性关系 (是,工程)
cordmod– 并列联合动词(coordinated verb compound) (颁布,实行)
  mmod — 情态动词(modal verb) (得到,能)
    ba — 把字关系
tclaus — 时间从句 (以后,积累)
       — semantic dependent
   cpm — 补语化成分(complementizer),一般指“的”引导的CP (振兴,的)

【NLP】依存句法关系符号解释的更多相关文章

  1. NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)

    摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P8 -P11 CIPS2016> 中文信息处理报告下载链接:http://cips-uplo ...

  2. 转:NLP+句法结构(三)︱中文句法结构(CIPS2016、依存句法、文法)

    NLP+句法结构(三)︱中文句法结构(CIPS2016.依存句法.文法)转自:https://www.cnblogs.com/maohai/p/6453389.html 摘录自:CIPS2016 中文 ...

  3. 学习笔记CB006:依存句法、LTP、n元语法模型、N-最短路径分词法、由字构词分词法、图论、概率论

    依存句法分析,法国语言学家L.Tesniere1959年提出.句法,句子规则,句子成分组织规则.依存句法,成分间依赖关系.依赖,没有A,B存在错误.语义,句子含义. 依存句法强调介词.助词划分作用,语 ...

  4. pyhanlp 两种依存句法分类器

    依存句法分析器 在HanLP中一共有两种句法分析器 ·依存句法分析 (1)基于神经网络的高性能依存句法分析器 (2)MaxEnt依存句法分析 基于神经网络的高性能依存句法分析器 HanLP中的基于神经 ...

  5. 基于CRF序列标注的中文依存句法分析器的Java实现

    这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(DoubleArrayTrie)储存,解码采用特化的维特比后向算法.相较于<最大熵依存句法分析器的实现&g ...

  6. NLP 依存分析

    NLP 依存分析 https://blog.csdn.net/sinat_33741547/article/details/79258045

  7. NLP教程(4) - 句法分析与依存解析

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-det ...

  8. NLP(十二)依存句法分析的可视化及图分析

      依存句法分析的效果虽然没有像分词.NER的效果来的好,但也有其使用价值,在日常的工作中,我们免不了要和其打交道.笔者这几天一直在想如何分析依存句法分析的结果,一个重要的方面便是其可视化和它的图分析 ...

  9. 自然语言分析工具Hanlp依存文法分析python使用总结(附带依存关系英文简写的中文解释)

    最近在做一个应用依存文法分析来提取文本中各种关系的词语的任务.例如:text=‘新中国在马克思的思想和恩格斯的理论阔步向前’: 我需要提取这个text中的并列的两个关系,从文中分析可知,“马克思的思想 ...

随机推荐

  1. maven依赖scope配置项讲解(转)

    原文:https://blog.csdn.net/lisongjia123/article/details/56299006 <scope>的分类一.complie编译域,这个是Maven ...

  2. Python----支持向量机SVM

    1.1. SVM介绍 SVM(Support Vector Machines)——支持向量机.其含义是通过支持向量运算的分类器.其中“机”的意思是机器,可以理解为分类器. 1.2. 工作原理 在最大化 ...

  3. Asp.Net Core Options模式的知识总结

    Options模式是Asp.Net Core中用于配置的一种模式,它利用了系统的依赖注入,并且还可以利用配置系统.它使我们可以采用依赖注入的方法直接使用绑定的一个POCO对象,这个POCO对象就叫做O ...

  4. python工程师成长之路精品课程(全套)

    python工程师成长之路精品课程(全套)  有需要联系我:QQ:1844912514 什么是Python? Python是一门面向对象的编程语言,它相对于其他语言,更加易学.易读,非常适合快速开发. ...

  5. 网络视频会议openmeetings Windows安装

    官网 http://openmeetings.apache.org/index.html 下载文件解压运行install-service脚本之后运行red5脚本启动 官方安装文档 http://ope ...

  6. Object.clone()方法与对象的深浅拷贝

    转载:[https://www.cnblogs.com/nickhan/p/8569329.html] 引言 在某些场景中,我们需要获取到一个对象的拷贝用于某些处理.这时候就可以用到Java中的Obj ...

  7. Spark2.2 saveAsTable 函数使用 overWrite 设置 Partition 会造成全覆盖的问题

    在使用 CDH 6.0.X 的版本还是自带的是 Spark2.2 的版本,2.2 版本的 Spark 使用 saveAsTable 如果使用overWrite PartitionBy 的功能会有和 h ...

  8. Mint-UI组件 MessageBox为prompt 添加判断条件

    Mint-UI 的Message Box 是prompt类型时,可以添加正则判断或者function判断条件.具体可以查看Mint-UI源码. 添加正则判断条件: MessageBox({ $type ...

  9. HF-01

    胡凡 本书在第2章对C语言的语法进行了详细的入门讲解,并在其中融入了部分C+的特性. 第3-5章是 入门部分. 第3章 初步训练读者最基本的编写代码能力: 第4章对 常用介绍,内容重要: 第5章是   ...

  10. 关于bytes和bytearray

    背景 平时工作因为有批量线上数据进行更新,通过Python程序连接数据库,利用连接池和gevent的并发性能,处理大量数据. 因为数据方提供的数据表结构中带有varbinary类型字段,并非全部,所以 ...