传送门


如果边不会消失,那么显然可以带权并查集做(然后发现自己不会写带权并查集

但是每条边有消失时间。这样每一条边产生贡献的时间对应一段区间,故对时间轴建立线段树,将每一条边扔到线段树对应的点上。

然后遍历整棵线段树,每遍历到一个点将覆盖这个点对应区间的边全部加入带权并查集中,递归到叶子节点输出答案。回溯的时候把在这一个点加入的边从并查集中栈序撤销。

因为需要撤销所以并查集不能使用路径压缩,只能按秩合并。

#include<iostream>
#include<cstdio>
#include<stack>
#include<vector>
//This code is written by Itst
using namespace std;

inline int read(){
    int a = 0;
    char c = getchar();
    while(!isdigit(c))
        c = getchar();
    while(isdigit(c)){
        a = a * 10 + c - 48;
        c = getchar();
    }
    return a;
}

const int MAXN = 1e5 + 7;
int N , M , T;

#define PII pair < int , int >
#define st first
#define nd second
#define mid ((l + r) >> 1)
#define lch (x << 1)
#define rch (x << 1 | 1)
vector < PII > Edge[MAXN << 2];
void addEd(int x , int l , int r , int L , int R , PII Ed){
    if(l >= L && r <= R){
        Edge[x].push_back(Ed);
        return;
    }
    if(mid >= L) addEd(lch , l , mid , L , R , Ed);
    if(mid < R) addEd(rch , mid + 1 , r , L , R , Ed);
}

struct node{
    int fa , val , sz;
}dsu[MAXN];

PII find(int x){
    if(dsu[x].fa == x) return PII(x , 0);
    PII t = find(dsu[x].fa);
    return PII(t.st , t.nd ^ dsu[x].val);
}

void solve(int x , int l , int r , bool f){
    stack < int > stk;
    for(vector < PII > :: iterator t = Edge[x].begin() ; t != Edge[x].end() ; ++t){
        int p = (*t).st , q = (*t).nd;
        PII M = find(p) , N = find(q);
        int m = M.st , n = N.st;
        if(m != n){
            if(dsu[m].sz > dsu[n].sz)
                swap(n , m);
            dsu[n].sz += dsu[m].sz;
            dsu[m].fa = n;
            dsu[m].val = M.nd ^ N.nd ^ 1;
            stk.push(m);
        }
        else
            f &= (M.nd ^ N.nd);
    }
    if(l == r)
        puts(f ? "Yes" : "No");
    else{
        solve(lch , l , mid , f);
        solve(rch , mid + 1 , r , f);
    }
    while(!stk.empty()){
        int t = stk.top(); stk.pop();
        dsu[dsu[t].fa].sz -= dsu[t].sz;
        dsu[t].val = 0; dsu[t].fa = t;
    }
}

int main(){
#ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    freopen("out","w",stdout);
#endif
    N = read(); M = read(); T = read();
    for(int i = 1 ; i <= M ; ++i){
        int a = read() , b = read() , l = read() , r = read();
        if(l < r)
            addEd(1 , 1 , T , l + 1 , r , PII(a , b));
    }
    for(int i = 1 ; i <= N ; ++i){
        dsu[i].fa = i;
        dsu[i].sz = 1;
    }
    solve(1 , 1 , T , 1);
    return 0;
}

BZOJ4025 二分图 线段树分治、带权并查集的更多相关文章

  1. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  2. UVA - 10004 Bicoloring(判断二分图——交叉染色法 / 带权并查集)

    d.给定一个图,判断是不是二分图. s.可以交叉染色,就是二分图:否则,不是. 另外,此题中的图是强连通图,即任意两点可达,从而dfs方法从一个点出发就能遍历整个图了. 如果不能保证从一个点出发可以遍 ...

  3. bzoj4025二分图(线段树分治 并查集)

    /* 思维难度几乎没有, 就是线段树分治check二分图 判断是否为二分图可以通过维护lct看看是否链接出奇环 然后发现不用lct, 并查集维护奇偶性即可 但是复杂度明明一样哈 */ #include ...

  4. [BZOJ4025]二分图(线段树分治,并查集)

    4025: 二分图 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2191  Solved: 800[Submit][Status][Discuss] ...

  5. BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并

    原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html 题目传送门 - BZOJ4025 题意 有$n$个点,有$m$条边.有$T$个时间段.其中 ...

  6. BZOJ 2333 棘手的操作(离线+线段树+带权并查集)

    这题搞了我一天啊...拍不出错原来是因为极限数据就RE了啊,竟然返回WA啊.我的线段树要开8倍才能过啊... 首先可以发现除了那个加边操作,其他的操作有点像线段树啊.如果我们把每次询问的联通块都放在一 ...

  7. hdu 1829 &amp;poj 2492 A Bug&#39;s Life(推断二分图、带权并查集)

    A Bug's Life Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  8. CodeForces - 687D: Dividing Kingdom II (二分图&带权并查集)

    Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great ...

  9. How Many Answers Are Wrong (HDU - 3038)(带权并查集)

    题目链接 并查集是用来对集合合并查询的一种数据结构,或者判断是不是一个集合,本题是给你一系列区间和,判断给出的区间中有几个是不合法的. 思考: 1.如何建立区间之间的联系 2.如何发现悖论 首先是如何 ...

随机推荐

  1. ASP.NET Core 2.1 : 十一. 如何在后台运行一个任务

    在大部分程序中一般都会需要用到后台任务, 比如定时更新缓存或更新某些状态.(ASP.NET Core 系列目录) 一.应用场景 以调用微信公众号的Api为例, 经常会用到access_token,官方 ...

  2. [Go] golang创建目录写文件判断文件

    package main import ( "log" "os" ) func main() { //创建目录 os.Mkdir("test" ...

  3. Java开发笔记(五)数值变量的类型

    如今个人电脑的配置越来越高,内存和硬盘的容量大小都是以G为单位,而1G=1024M=1024*1024K=1024*1024*1024字节.不过在PC的早期发展阶段,电脑的存储空间却是十分有限的,像2 ...

  4. CSS---伪类与伪元素的区别

    在CSS中对于伪类和伪元素并没有做出很明显的区别定义,两者的语法是一样的,都是以 : 开头,这样导致我们将一些伪元素误认为伪类,如 :before :after 而在CSS3中给出了明显的定义. ☞ ...

  5. CSS3 font-face使用

    在 CSS3 之前,web 设计师必须使用已在用户计算机上安装好的字体. 通过 CSS3,web 设计师可以使用他们喜欢的任意字体. 当您找到或购买到希望使用的字体时,可将该字体文件存放到 web 服 ...

  6. #WEB安全基础 : HTML/CSS | 0x6嵌套标签(图片链接)

    嵌套标签我们已经讲一次了,在0X4.1里,我们把列表嵌套了 你觉得文字链接难看得令人作呕,好,你再也不会有这种感觉了   一如既往,一个html文件和一个存放图片的文件夹 index.html的代码, ...

  7. #WEB安全基础 : HTML/CSS | 0x5a标签拓展和class、id属性的使用

    a标签不只是能链接到其他网页,也能链接到网页中的元素 class属性让你用CSS对特定的元素进行修饰 这些是一个网页设计者的有力武器 这节课还是一个index.html文件   以下是代码 <h ...

  8. 【Dojo 1.x】笔记5 使用本地引用

    习惯用CDN引用的同学肯定会知道还有一种叫本地引用,这篇笔记测试本地引用. Dojo SDK下载地址:点我 下载中间的Release Package即可,如果希望下载完整包(Full Source), ...

  9. 微信小程序(四) 模板的使用

    模板的使用:单独建立一个页面,在另一个页面通过name属性名调用使用(注意要导入模板路径) template.wxml页面

  10. 定时删除所有文件夹下的_desktop.ini文件

    写个批处理,删除对应的文件,命名为DELDesktopIni.bat,存于D盘根目录 @echo off :delini for %%a in ( C: D: E: ) DO ( del /f/s/a ...