Codeforces 938G Shortest Path Queries

一张连通图,三种操作

1.给x和y之间加上边权为d的边,保证不会产生重边

2.删除x和y之间的边,保证此边之前存在

3.询问x到y的路径异或最小值

保证图在任意时刻连通

首先连通图路径异或相当于从x到y的任意一条路径再异或上若干个环得到的,只要在dfs过程中把非树边成的环丢到线性基里就好了,其他环一定可以通过这些环异或组合出来

有加边删边操作怎么做呢?线段树时间分治!注意到不能保证在线段树的任意一个节点图是连通的,需要用可撤销并查集来维护,总复杂度\(O(q\log(n)\log(q))\)

tips:其实线性基因为一次插入只有一个赋值操作也可以用同样的方式撤销,不一定要每次都复制一遍下传

//segment tree divide and conquer
//linear base, dsu(rollback)
#include <bits/stdc++.h>
using namespace std; const int N = 2e5 + 10; struct Linear_Base {
int a[30];
Linear_Base() {memset(a, 0, sizeof(a));}
void insert(int val) {
for(int i = 29; ~i; --i) {
if((val >> i) & 1) {
if(a[i] == 0) {
a[i] = val;
return;
}
val ^= a[i];
}
}
}
int query(int val) {
for(int i = 29; ~i; --i)
val = min(val, val ^ a[i]);
return val;
}
}; pair<int*, int> save[N * 10];
int top; void change(int &address, int val) {
save[top++] = make_pair(&address, address);
address = val;
} void rollback(int st) {
while(st != top) {
top--;
*save[top].first = save[top].second;
}
} struct edge {
int x, y, d;
edge() {x = y = d = 0;}
edge(int _x, int _y, int _d) : x(_x), y (_y), d(_d) {}
}; struct que {
int x, y, id;
que() {x = y = id = 0;}
que(int _x, int _y, int _id) : x(_x), y (_y), id(_id) {}
}; int ans[N], tot; vector<edge> G[N << 2];
vector<que> Q[N << 2]; int dsu[N], size[N], dis[N]; int find(int x) {
return x == dsu[x] ? x : find(dsu[x]);
} int get_dist(int x) {
return x == dsu[x] ? 0 : dis[x] ^ get_dist(dsu[x]);
} int unite(int x, int y, int d) {
d ^= get_dist(x);
d ^= get_dist(y);
x = find(x);
y = find(y);
if(x == y)
return 0;
if(size[x] < size[y]) swap(x, y);
change(size[x], size[x] + size[y]);
change(dsu[y], x);
change(dis[y], d);
return 1;
} void update(int rt, int l, int r, int L, int R, const edge &x) {
if(L <= l && r <= R) {G[rt].push_back(x); return;}
int mid = l + r >> 1;
if(L <= mid) update(rt << 1, l, mid, L, R, x);
if(R > mid) update(rt << 1 | 1, mid + 1, r, L, R, x);
} void add_query(int rt, int l, int r, int pos, const que &x) {
if(l == r) {Q[rt].push_back(x); return;}
int mid = l + r >> 1;
if(pos <= mid) add_query(rt << 1, l, mid, pos, x);
else add_query(rt << 1 | 1, mid + 1, r, pos, x);
} void dfs(int rt, int l, int r, Linear_Base Base) {
int st = top;
for(auto e : G[rt]) {
if(!unite(e.x, e.y, e.d)) {
Base.insert(get_dist(e.x) ^ get_dist(e.y) ^ e.d);
}
}
if(l == r) {
for(auto q : Q[rt])
ans[q.id] = Base.query(get_dist(q.x) ^ get_dist(q.y));
}
else {
int mid = l + r >> 1;
dfs(rt << 1, l, mid, Base);
dfs(rt << 1 | 1, mid + 1, r, Base);
}
rollback(st);
} int n, m, q, op, x, y, d;
map<pair<int, int>, pair<int, int>> st; int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) dsu[i] = i, size[i] = 1, dis[i] = 0;
for(int i = 1; i <= m; ++i) {
scanf("%d%d%d", &x, &y, &d);
st[make_pair(x, y)] = make_pair(1, d);
}
scanf("%d", &q);
for(int i = 1; i <= q; ++i) {
scanf("%d%d%d", &op, &x, &y);
if(op == 1) {
scanf("%d", &d);
st[make_pair(x, y)] = make_pair(i, d);
}
else if(op == 2) {
update(1, 1, q, st[make_pair(x, y)].first, i, edge(x, y, st[make_pair(x, y)].second));
st.erase(make_pair(x, y));
}
else {
add_query(1, 1, q, i, que(x, y, ++tot));
}
}
for(auto e: st) {
update(1, 1, q, e.second.first, q, edge(e.first.first, e.first.second, e.second.second));
}
dfs(1, 1, q, Linear_Base());
for(int i = 1; i <= tot; ++i) {
printf("%d\n", ans[i]);
}
return 0;
}

Codeforces 938G 线段树分治 线性基 可撤销并查集的更多相关文章

  1. BZOJ.4184.shallot(线段树分治 线性基)

    BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...

  2. $CF938G\ Shortest\ Path\ Queries$ 线段树分治+线性基

    正解:线段树分治+线性基 解题报告: 传送门$QwQ$ 考虑如果只有操作3,就这题嘛$QwQ$ 欧克然后现在考虑加上了操作一操作二 于是就线段树分治鸭 首先线段树叶子节点是询问嘛这个不用说$QwQ$. ...

  3. 【luogu3733】【HAOI2017】 八纵八横 (线段树分治+线性基)

    Descroption 原题链接 给你一个\(n\)个点的图,有重边有自环保证连通,最开始有\(m\)条固定的边,要求你支持加边删边改边(均不涉及最初的\(m\)条边),每一次操作都求出图中经过\(1 ...

  4. LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset

    题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...

  5. 【线段树分治 线性基】luoguP3733 [HAOI2017]八纵八横

    不知道为什么bzoj没有HAOI2017 题目描述 Anihc国有n个城市,这n个城市从1~n编号,1号城市为首都.城市间初始时有m条高速公路,每条高速公路都有一个非负整数的经济影响因子,每条高速公路 ...

  6. BZOJ4184:shallot(线段树分治,线性基)

    Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱 ...

  7. bzoj 4184 shallot——线段树分治+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就 ...

  8. bzoj 4184: shallot (线段树维护线性基)

    题面 \(solution:\) 这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式(神犇可以跳过了).像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树... ...

  9. BZOJ4025: 二分图【线段树分治】【带撤销的并查集】

    Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input ...

随机推荐

  1. webstorm安装与破解

    1.下载webstorm和补丁文件 链接:https://pan.baidu.com/s/1aiHxPExAbDCcHxKtB82_vg 提取码:jo07 链接:https://pan.baidu.c ...

  2. phonegap 开发指南系列----简介(2)

    一.简介      Cordova提供了一组设备相关的API,通过这组API,移动应用能够以JavaScript访问原生的设备功能,如摄像头.麦克风等.      Cordova还提供了一组统一的Ja ...

  3. iptables 命令大全

    1.连续端口配置 iptables可以方便的配置多个端口.其中根据端口的连续性,又可分为连续端口配置和不连续端口配置. 如: -A INPUT -p tcp –dport 21:25 -j DROP/ ...

  4. thinkphp 变量输出

    在模板中输出变量的方法很简单,例如,在控制器中我们给模板变量赋值: 大理石平台支架 $name = 'ThinkPHP'; $this->assign('name',$name); $this- ...

  5. 0917CSP-S模拟测试赛后总结

    机房搬家后的首战,便是失利. 依旧是挂掉了.这次状态有大问题. 然而状态的问题归根结底还是实力不行. 大约一个小时左右我拿到了T1的部分分.赛时判断了一下大概是高分. (不过赛后发现确实不算什么太高的 ...

  6. 背包dp+打表处理——cf999F

    考虑每种c都是可以独立进行计算的,所以这题的答案等价于每种c的最优解之和 计算每种c的最优解:把问题转化成求出每种c的最大值,再转化成i个人分j张卡片的最大收益 dp[i,j]表示i个人分j张卡片的最 ...

  7. WinDBG常用断点命令

    WinDBG提供了多种设断点的命令: bp 命令是在某个地址 下断点, 可以 bp 0x7783FEB 也可以 bp MyApp!SomeFunction . 对于后者,WinDBG 会自动找到MyA ...

  8. 导入数据时出现“SqlDateTime 溢出

    错误出现:导入数据时出现“SqlDateTime 溢出.必须介于 1/1/1753 12:00:00 AM 和 12/31/9999 11:59:59 PM之间.” 出现这种问题多半是因为你插入或者更 ...

  9. idea从github中pull或者push成功之后tomcat启动不了,报Error....

    解决方案:删除deployment里面的war包,确定. 再在deployment里面重新添加一个war包,确定,即可.

  10. UBOOT把文件写入 NandFlash

    如果把一个传到内存中的文件写入到 Nand Flash 中, 如:新的 uboot.bin, zImage(内核), rootfs 等, 如果做呢?我们可以用 Nand Flash 命令来完成. 但是 ...