[bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵
Description
小凸和小方是好朋友,小方给小凸一个 \(N \times M\)( \(N \leq M\) )的矩阵 \(A\) ,要求小秃从其中选出 \(N\) 个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的 \(N\) 个数中第 \(K\) 大的数字的最小值是多少。
Input
第一行给出三个整数 \(N\) , \(M\) , \(K\)
接下来 \(N\) 行,每行 \(M\) 个数字,用来描述这个矩阵
Output
如题
Sample Input
3 4 2
1 5 6 6
8 3 4 3
6 8 6 3
Sample Output
3
HINT
\(1 \leq K \leq N \leq M \leq 250\) , \(1 \leq 矩阵元素 \leq 10^9\)
想法
题中的“小秃” 怕不是再说我呜呜
看到 第 \(k\) 大最小,下意识想到二分。
可二分需要满足有单调性啊?这道题中第 \(k\) 大的数肯定不是越大越满足条件的,满足条件的应是一段区间。
但我们仍可二分这个值的下限 \(x\) ,要满足从 \(\leq x\) 的元素中可选出 \(n-k+1\) 个合法的。
怎么判断能不能选出 \(n-k+1\) 个合法的呢?
我一开始竟一直想怎么数据结构搞…
后来才意识到,“任两个不能在同一行或同一列” 是个挺经典的模型:把行和列当成点,将可选的元素所在的行与列连边,跑二分图匹配就好了。
这样我们得到下限 \(x\) 了,但仍有一个问题,能不能选出 \(k-1\) 个 \(\geq x\) 的元素构成一个合法方案呢?
好巧的是,一定可以。
简略证明如下:
既然 \(x\) 是下限,那么在 \(\leq x-1\) 的元素中一定选不出 \(n-k+1\) 个构成合法方案
那么在当前选了 \(n-k+1\) 个元素后再随便选 \(k-1\) 个元素构成合法方案,这 \(n\) 个元素中 \(\leq x-1\) 的 \(<n-k+1\)
也就是说 \(\geq x\) 的至少有 \(k\) 个。
那么,在我们选出的元素中,二分保证了 \(\leq x\) 的至少有 \(n-k+1\) 个,上面的证明保证 \(\geq x\) 的至少有 \(k\) 个,则第 \(k\) 大的一定是 \(x\)
这个证明太神了……我自己绝对想不到啊 \(qwq\)
要在考场上只能凭感觉猜了 \(qwq\)
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
}
const int N = 255;
int n,m,k;
int a[N][N];
int mp[N][N],vis[N],con[N];
bool find(int u){
for(int v=1;v<=m;v++){
if(!mp[u][v] || vis[v]) continue;
vis[v]=1;
if(!con[v] || find(con[v])){
con[v]=u;
return true;
}
}
return false;
}
bool check(int x){
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
mp[i][j]=(a[i][j]<=x);
memset(con,0,sizeof(con));
int f=0;
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(find(i)) f++;
}
return f>=n-k+1;
}
int main()
{
n=read(); m=read(); k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) a[i][j]=read();
int l=1000000009,r=0,mid;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
l=min(l,a[i][j]);
r=max(r,a[i][j]);
}
while(l<r){
mid=(l+r)>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
printf("%d\n",l);
return 0;
}
[bzoj4443] [loj#2006] [洛谷P4251] [Scoi2015]小凸玩矩阵的更多相关文章
- 洛谷 4251 [SCOI2015]小凸玩矩阵
[题解] 二分答案+二分图匹配. 先二分最小值Min,然后扫一遍这个矩阵,把满足a[i][j]<=Min的i,j连边,之后跑二分图匹配,如果最大匹配数大于等于n-k+1,当前的Min即是合法的. ...
- [LUOGU] P4251 [SCOI2015]小凸玩矩阵
行列看成点,格子看成边,二分一个边权,删去大于它的边,新图上的最大流>k则答案可以更优,小于k则调整左边界. #include<algorithm> #include<iost ...
- 【BZOJ4443】[Scoi2015]小凸玩矩阵 二分+二分图最大匹配
[BZOJ4443][Scoi2015]小凸玩矩阵 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或 ...
- 2018.06.30 BZOJ4443: [Scoi2015]小凸玩矩阵(二分加二分图匹配)
4443: [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方是好朋友,小方给小凸一个N*M(N< ...
- BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配
BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个 ...
- BZOJ 4443: [Scoi2015]小凸玩矩阵 最大流
4443: [Scoi2015]小凸玩矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4443 Description 小凸和小方是好 ...
- bzoj 4443 [Scoi2015]小凸玩矩阵 网络流,二分
[Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1564 Solved: 734[Submit][Status][Di ...
- 【洛谷P4251】[SCOI2015]小凸玩矩阵(二分+二分图匹配)
洛谷 题意: 给出一个\(n*m\)的矩阵\(A\).现要从中选出\(n\)个数,任意两个数不能在同一行或者同一列. 现在问选出的\(n\)个数中第\(k\)大的数的最小值是多少. 思路: 显然二分一 ...
- 【bzoj4443】【[Scoi2015]小凸玩矩阵】二分+二分图最大匹配
(上不了p站我要死了,侵权度娘背锅) Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸 ...
随机推荐
- 【t044】弗洛伊德
Time Limit: 1 second Memory Limit: 128 MB [问题描述] 弗洛伊德是一个大牛!给一个有向图G,他有n个结点,现在请你求出对于他的每一对结点(x,y),从x出发走 ...
- dotnet 方法名 To 和 As 有什么不同
在看到 dotnet 框架里面有很多方法里面用了 ToXx 和 AsXx 好像都是从某个类转换为另一个类,那么这两个方法命名有什么不同 在约定的方法命名里面,用 To 的方法表示从类 A 转为类 B ...
- 记springboot + MP +Hikari动态数据源配置
环境准备: springboot 2.1.6 mybatis-plus 数据库驱动 boot 自带hikari驱动 步骤1: 导入多数据源启动工具类 <!-- 多数据源支持 -->< ...
- @程序员,你们还在用网上乱找的方法导入导出Excel么,我们给你造了个轮子!!!!!
程序员的显著特点 有一天跟一位同事跟我闲聊,讨论起过去若干年软件行业的感受,他问了个问题:你觉得一个好的软件工程师最显著的特点是什么? 我想了一会,说:大概是坐得住吧. 某种意义上来说,在互联网技术飞 ...
- Python 打包——过去、现在与未来
英文 | Python packaging - Past, Present, Future[1] 原作 | BERNAT GABOR 译者 | 豌豆花下猫 声明 :本文获得原作者授权翻译,转载请保留原 ...
- Kafka原理及应用(一)
一. Kafka简介 (1) 消息中间件的两种实现模式 JMS (Java Message Service) 对消息的发送和接收定义了两种模式: 点对点模式:消息的生产和消费者均只有一个,消息由生产者 ...
- 「Luogu P1435」回文字串 解题报告
题面 主要大衣大意: 给定一个字符串,求至少加入多少个字符才能使字符串变成回文字符串 下面就是我一本正经的胡说八道题解 思路: 很显然,这应该是一道典型的最长公共子序列的题目 因此,主要思想就是DP ...
- 使用Rancher Server部署本地多节点K8S集群
当我第一次开始我的Kubernetes之旅时,我一直在寻找一种设置本地部署环境的方式.很多人常常会使用minikube或microk8s,这两者非常适合新手在单节点集群环境下进行操作.但当我已经了解了 ...
- 一条SQL注入引出的惊天大案2:无限战争
前情回顾: 经过黑衣人和老周的合作,终于清除了入侵Linux帝国的网页病毒,并修复了漏洞.不曾想激怒了幕后的黑手,一场新的风雨即将来临. 详情参见:一条SQL注入引出的惊天大案 风云再起 小Q是L ...
- 理解TCP/IP协议栈之HTTP2.0
1 前言 前面写了10多篇关于Redis底层实现.工程架构.实际应用的文章,感兴趣的读者可以进行阅读,如有问题欢迎交流: 1.Redis面试热点之底层实现篇-12.Redis面试热点之底层实现篇-23 ...