Learning to Rank

  • pointwise

\[
L\left(f ; x_{j}, y_{j}\right)=\left(y_{j}-f\left(x_{j}\right)\right)^{2}
\]

只考虑给定查询下单个文档的绝对相关度,不考虑其他文档和给定查询的相关度.

输入空间中样本是单个 doc(和对应 query)构成的特征向量;

输出空间中样本是单个 doc(和对应 query)的相关度;

假设空间中样本是打分函数;

损失函数评估单个 doc 的预测得分和真实得分之间差异。

  • PairWise

\[
L\left(h ; x_{u}, x_{v}, y_{u, v}\right)=\left(y_{u, v}-P\left(x_{u} \succ x_{v}\right)\right)^{2}+\left(y_{v, u}-P\left(x_{u} \prec x_{v}\right)\right)^{2}
\]

考虑给定查询下两个文档直接的相对相关度。比如给定查询query的一个真实文档序列,我们只需要考虑任意两个相关度不同的文档直接的相对相关度。

输入应该是两个item的特征,最重的输出应该是两个item的大小关系

输入空间中样本是(同一 query 对应的)两个 doc(和对应 query)构成的两个特征向量;
输出空间中样本是 pairwise preference;
假设空间中样本是二变量函数;
损失函数评估 doc pair 的预测 preference 和真实 preference 之间差异

  • ListWise

\[
L(F(x),y) = exp(-NDCG) \\NDCG = DCG/IDCG \\ DCG = g_i+\sum_{i=2}\frac{g_i}{log_2^{i}}
\]

\(g_i\) 表示对应项的增益(得分)。NDCG(Normalized Discounted Cumulative Gain); IDCG (Ideal DCG)

举个栗子:

搜索结果 3、1、2、3、2 ; DCG = 3+(1+1.26+1.5+0.86 )=7.62

IDCG下的分值排列顺序是3、3、2、2、1 ; IDCG=3 + (3+1.26+1+0.43)=8.69

直接考虑给定查询下的文档集合的整体序列,直接优化模型输出的文档序列

输入空间中样本是(同一 query 对应的)所有 doc(与对应的 query)构成的多个特征向量(列表);
输出空间中样本是这些 doc(和对应 query)的相关度排序列表或者排列;
假设空间中样本是多变量函数,对于 docs 得到其排列,实践中,通常是一个打分函数,根据打分函数对所有docs 的打分进行排序得到 docs 相关度的排列;

reference:

https://blog.csdn.net/lipengcn/article/details/80373744

https://blog.csdn.net/u014313009/article/details/38944687

搜索排序-learning to Rank简介的更多相关文章

  1. 【机器学习】Learning to Rank 简介

    Learning to Rank 简介 去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值.L2R将机器学习的技术很好的应用到了排 ...

  2. Learning to Rank 简介

    转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩 ...

  3. Learning to Rank简介

    Learning to Rank是采用机器学习算法,通过训练模型来解决排序问题,在Information Retrieval,Natural Language Processing,Data Mini ...

  4. 推荐排序---Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点

    转载:https://blog.csdn.net/lipengcn/article/details/80373744 Ranking 是信息检索领域的基本问题,也是搜索引擎背后的重要组成模块. 本文将 ...

  5. [Machine Learning] Learning to rank算法简介

    声明:以下内容根据潘的博客和crackcell's dustbin进行整理,尊重原著,向两位作者致谢! 1 现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,有大量的成熟的方法,主要 ...

  6. Learning to Rank之Ranking SVM 简介

    排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank简 ...

  7. Learning to Rank之RankNet算法简介

    排序一直是信息检索的核心问题之一, Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning to Rank的简介请见我的博文Learning to Rank ...

  8. 【机器学习】Learning to Rank之Ranking SVM 简介

    Learning to Rank之Ranking SVM 简介 排序一直是信息检索的核心问题之一,Learning to Rank(简称LTR)用机器学习的思想来解决排序问题(关于Learning t ...

  9. 芝麻HTTP: Learning to Rank概述

    Learning to Rank,即排序学习,简称为 L2R,它是构建排序模型的机器学习方法,在信息检索.自然语言处理.数据挖掘等场景中具有重要的作用.其达到的效果是:给定一组文档,对任意查询请求给出 ...

随机推荐

  1. SDUT-3441_数据结构实验之二叉树二:遍历二叉树

    数据结构实验之二叉树二:遍历二叉树 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 已知二叉树的一个按先序遍历输入的字符 ...

  2. jQuery 滑动

    jQuery 滑动方法 通过 jQuery,您可以在元素上创建滑动效果. jQuery 拥有以下滑动方法: slideDown() slideUp() slideToggle() jQuery sli ...

  3. 在线学编程!十大IT在线教育网站推荐

    在线学编程!十大IT在线教育网站推荐 1.CSDN学院(http://edu.csdn.net/) CSDN学院是CSDN推出的一个面向中国软件开发者和IT专业人员的技术教育服务平台.主要提供IT领域 ...

  4. hdu 4114 Disney's FastPass(最短路+状态压缩)

    Disney's FastPass Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  5. python selenium 测试配置信息(URL和浏览器)

    config.ini # this is config file, only store browser type and server URL [browserType] #browserName ...

  6. windows环境下安装nodeJS和express,一直提示command not found-配置环境变量

    1.安装NodeJS后,使用npm指令安装express框架,使用 npm install -g express npm install -g express-generator 安装了大半天的时间, ...

  7. 传说中Python最难理解的点|看这完篇就够了(装饰器)

    https://mp.weixin.qq.com/s/B6pEZLrayqzJfMtLqiAfpQ 1.什么是装饰器 网上有人是这么评价装饰器的,我觉得写的很有趣,比喻的很形象 每个人都有的内裤主要是 ...

  8. HDU 1114 完全背包问题

    题意:有一个存钱罐,空罐时的重量是e,满罐时的重量是f,现在有n种硬币,每一种有无限个,现在给出每一种硬币的价值p和重量w,问存钱罐中最少钱,输出最小钱,否则输出... 思路:变形的完全背包问题,只是 ...

  9. poj1573

    题意:给出一个矩形,N,E,S,W分别代表进行移动的方向,如果走出矩形网格则输出经过的网格数,如果在矩形网格内循环,则输出没进入循环之前所走过的网格数和循环所经过的网格数: 思路:创建两个数组,一个字 ...

  10. Yarn install 报错 Resolving packages... [2/4] Fetching packages... info There appears to be trouble with your network connection. Retrying

    1.设置淘宝代理 yarn config set registry 'https://registry.npm.taobao.org' 2.如果网址本地可以打开,说明你本地有代理设置 所以需要按本地的 ...