正解:网络流

解题报告:

传送门!

$umm$看到每个人要么0要么1就考虑最小割呗,,,?

然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了

所以考虑开一排点分别表示每个人,然后$S$表示0$T$表示1每个人先分别连向自己的意愿

然后再每个人向朋友连边

然后就欧克了,,,?

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ri register int
#define rc register char
#define rb register bool
#define t(i) edge[i].to
#define fy(i) edge[i].fy
#define w(i) edge[i].wei
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define e(i,x) for(ri i=head[x];~i;i=edge[i].nxt) const int N=+,inf=1e9;
int ed_cnt=-,head[N],dep[N],S,T,cur[N],n,m;
struct ed{int to,nxt,wei;}edge[N*N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch<'' || ch>''))ch=gc;
if(ch=='-')ch=gc,y=;
while(''<=ch && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z,ri tmp)
{edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],tmp};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty())
{ri nw=Q.front();Q.pop();e(i,nw)if(w(i) && !dep[t(i)]){dep[t(i)]=dep[nw]+,Q.push(t(i));if(t(i)==T)return ;}}
return dep[T];
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=edge[i].nxt)
if(w(i) && dep[t(i)]==dep[nw]+)
{ri tmp=dfs(t(i),min(flow,w(i)));flow-=tmp,w(i)-=tmp,ret+=tmp,w(i^)+=tmp;}
if(!ret)dep[nw]=;
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
memset(head,-,sizeof(head));n=read();m=read();S=;T=n+;
rp(i,,n){read()?ad(i,S,,):ad(T,i,,);}rp(i,,m){ri x=read(),y=read();ad(x,y,,);}
printf("%d\n",dinic());
return ;
}

洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流的更多相关文章

  1. 洛谷 P2057 [SHOI2007]善意的投票 解题报告

    P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  2. [洛谷P2057][bzoj1934]善意的投票(最大流)

    题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来 ...

  3. 洛谷P2057 [SHOI2007]善意的投票 题解

    题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...

  4. [洛谷P2057][SHOI2007]善意的投票

    题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...

  5. P2057 [SHOI2007]善意的投票 (最大流)

    题目 P2057 [SHOI2007]善意的投票 解析 网络流的建模都如此巧妙. 我们把同意的意见看做源点\(s\),不同意的意见看做汇点\(t\). 那我们\(s\)连向所有同意的人,\(t\)连向 ...

  6. P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查

    P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查 拿来练网络流的qwq 思路:如果i不同意,连边(i,t,1),否则连边(s,i,1).好朋友x,y间连边(x,y,1)(y ...

  7. P2057 [SHOI2007]善意的投票 最小割

    $ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  8. Luogu P2057 [SHOI2007]善意的投票

    题目链接 \(Click\) \(Here\) 考虑模型转换.变成文理分科二选一带收益模型,就一波带走了. 如果没有见过这个模型的话,这里讲的很详细. #include <bits/stdc++ ...

  9. 【题解】Luogu P2057 [SHOI2007]善意的投票

    原题传送门 我们一眼就能看出这是一道最小割的题 我们设不睡觉这种状态为S,睡觉这种状态为T 对于每个人,如果不想睡觉,就从S向这个人连流量为1的边,否则,就从这个人向T连流量为1的边 对于每一对朋友, ...

随机推荐

  1. @总结 - 1@ 多项式乘法 —— FFT

    目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - ...

  2. 从零学React Native之02状态机

    本篇文章首发于简书 欢迎关注 之前我们介绍了RN相关的知识: 是时候了解React Native了 从零学React Native之01创建第一个程序 本篇文章主要介绍下下面的知识: 1.简单界面的搭 ...

  3. oracle函数 exp(y)

    [功能]返回e的y次幂(e为数学常量) [参数]y,数字型表达式 [返回]数字 [示例] select exp(3),exp(0),exp(-3) from dual; 返回:20.0855369,1 ...

  4. oracle计算记录条数

    和一般的观点相反, count(*) 比count(1)稍快 , 当然如果可以通过索引检索,对索引列的计数仍旧是最快的. 例如 COUNT(EMPNO)

  5. 【codeforces 520C】DNA Alignment

    [题目链接]:http://codeforces.com/contest/520/problem/C [题意] 给你一个函数; 它的作用是评估两个字符串的相似程度; 评估的时候: 保持一个字符串不动, ...

  6. xml path 列转行实例

    SQL Server2005提供了一个新查询语法——For XML PATH(''),这个语法有什么用呢?想象一下这样一个查询需求:有两个表,班级表A.学生表B,要查询一个班级里有哪些学生?针对这个需 ...

  7. Google Colab——用谷歌免费GPU跑你的深度学习代码

    Google Colab简介 Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用,但是不是永久免费暂时还不确定.Google Col ...

  8. [转]Android Studio实现代码混淆

     1,在build.grandle添加,其中规则写在proguard-rules.pro中,也可以自定义一个文件,将其代替,比如eclipse常用的 proguard-project.txt: bui ...

  9. java什么是方法的重载(Overload)

    概念:        在同一个类中,允许存在一个以上的同名方法,只要它们的参数个数或者参数类型或参数顺序不同即可. 存在的原因: 屏蔽了一个对象的同一类方法由于参数不同所造成的差异. 特点: 与返回值 ...

  10. caffe学习(1):多平台下安装配置caffe

    如何在 centos 7.3 上安装 caffe 深度学习工具   有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿 ...