COMMUNITY DETECTION_python-louvain
Python-louvain Package
pip install python-louvain
import community
#first compute the best partition
partition = community.best_partition(G)
#Drawing partition
Method 1:
#drawing
size = float(len(set(partition.values())))
pos = nx.spring_layout(G)
count = 0.
for com in set(partition.values()) :
count = count + 1.
list_nodes = [nodes for nodes in partition.keys()
if partition[nodes] == com]
nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 20,
node_color = str(count / size)) nx.draw_networkx_edges(G, pos, alpha=0.5)
plt.show()
Method 2:
pos = nx.spring_layout(G)
values = [partition.get(node) for node in G.nodes()]
nx.draw_networkx(G, pos, cmap=plt.get_cmap('magma'), node_color=values, node_size=50, with_labels=False)
Supplementary knowledge:
1. what is the partition of graphs.
partition: dict; {key (nodes_id): values(community_id)}
2. function : community.best_partition(G)
Returns
-------
partition : dictionnary
The partition, with communities numbered from 0 to number of communities
def best_partition(graph,
partition=None,
weight='weight',
resolution=1.,
randomize=None,
random_state=None):
"""Compute the partition of the graph nodes which maximises the modularity
(or try..) using the Louvain heuristices This is the partition of highest modularity, i.e. the highest partition
of the dendrogram generated by the Louvain algorithm. Parameters
----------
graph : networkx.Graph
the networkx graph which is decomposed
partition : dict, optional
the algorithm will start using this partition of the nodes.
It's a dictionary where keys are their nodes and values the communities
weight : str, optional
the key in graph to use as weight. Default to 'weight'
resolution : double, optional
Will change the size of the communities, default to 1.
represents the time described in
"Laplacian Dynamics and Multiscale Modular Structure in Networks",
R. Lambiotte, J.-C. Delvenne, M. Barahona
randomize : boolean, optional
Will randomize the node evaluation order and the community evaluation
order to get different partitions at each call
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`. Returns
-------
partition : dictionnary
The partition, with communities numbered from 0 to number of communities
COMMUNITY DETECTION_python-louvain的更多相关文章
- 模块度与Louvain社区发现算法
Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度. 模块度(Modularity) 模块度是评估一个社 ...
- Louvain 算法原理
Louvain算法是一种基于图数据的社区发现算法,算法的优化目标为最大化整个数据的模块度,模块度的计算如下: 其中m为图中边的总数量,k_i表示所有指向节点i的连边权重之和,k_j同理.A_{i,j} ...
- Louvain Modularity Fast unfolding of communities in large networks
Louvain Modularity Fast unfolding of communities in large networks https://arxiv.org/pdf/0803.0476.p ...
- Louvain algorithm for community detection
主要理解Louvain 算法中对于模块度的定义:模块度是评估一个社区网络划分好坏的度量方法,它的物理含义是社区内节点的连边数与随机情况下的边数只差,它的取值范围是 [−1/2,1).可以简单地理解为社 ...
- [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...
- Louvain 论文笔记
Louvain Introduce Louvain算法是社区发现领域中经典的基于模块度最优化的方法,且是目前市场上最常用的社区发现算法.社区发现旨在发现图结构中存在的类簇(而非传统的向量空间). Al ...
- 并行Louvain社区检测算法
因为在我最近的科研中需要用到分布式的社区检测(也称为图聚类(graph clustering))算法,专门去查找了相关文献对其进行了学习.下面我们就以这篇论文IPDPS2018的文章[1]为例介绍并行 ...
- conda安装包
前面讲了有关conda改变镜像提高安装速度,这里来解决很多实用C写的酷,在Windows下不好安装的解决方案 1. 寻找wheel预编译文件 没有的话 2.使用conda命令安装 没有该包的话 3.实 ...
- Hadoop 全分布模式 平台搭建
现将博客搬家至CSDN,博主改去CSDN玩玩~ 传送门:http://blog.csdn.net/sinat_28177969/article/details/54138163 Ps:主要答疑区在本帖 ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
随机推荐
- 开启WIndows10 未经身份验证的来宾访问策略以及SMB1
打开记事本编辑保存至.vbs 以管理员身份运行 Set obj = createobject("wscript.shell") obj.run ("reg add HKL ...
- 解决vue-cli使用组件报错
今天使用vue-cli,明明写的没错,都是vue-cli自动生成的,编译时怎嘛就会报错呢? 报错信息如下: 浏览器端报错: Failed to compile. ./src/components/Hi ...
- day9 修改文件
# 修改文件 # 文件是不能修改 with open('小护士班主任', mode='r', encoding='utf-') as f, open('小护士班主任.bak', 'w', encodi ...
- nunjucks如何使用?
基本的使用 const nunjucks = require('nunjucks') // nunjucks.configure({ autoescape: true }); // const res ...
- 在Django中使用Sentry(Python 3.6.8 + Django 1.11.20 + sentry-sdk 0.13.5)
1. 安装Sentry pip install sentry-sdk==0.13.5 2.在settings.py中配置 sentry_sdk.init( dsn="https://**** ...
- C语言输出杨辉三角形
// 打印杨辉三角: 行 + 列 ][] = { }; // 1. 确定要打印的行数: 13(n) ; i < ; ++i) { // 2. 确定列数:杨辉三角 行 == 列 ; j <= ...
- Cobalt Strike配置及简单使用
前言 CS分为客户端与服务端,服务端是一个,客户端可以有多个,非常适合团队协同作战,多个攻击者可以同时连接到一个团队服务器上,共享攻击资源与目标信息和sessions,可模拟APT做模拟对抗,进行内网 ...
- kali的virtualbox镜像账号密码
下载最新版本kali的virtualbox镜像 默认账号密码 root 密码 toor
- Linux connect: Network is unreachable
在虚拟机中ping,发现网络不通: [root@node01 ~]# ping 114.114.114.114 connect: Network is unreachable 发生此问题时,环境如下: ...
- 1315E Double Elimination DP 01枚举状态和倍增思想
E. Double Elimination DP 01枚举状态和倍增思想 题意 参考DOTA2双败赛制,一共有\(2^n\)个队打n轮 其中你有k喜欢的队伍,由你掌控比赛的输赢请问比赛中包含你喜欢的队 ...