https://vjudge.net/contest/317000#problem/F

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <cmath>
#include <cstring>
#define inf 2147483647
#define P 998244353
#define p(a) putchar(a)
#define For(i,a,b) for(long long i=a;i<=b;++i) using namespace std;
long long T;
long long n,a,b,c;
struct data{
long long f,g,h;
data calc(long long n,long long a,long long b,long long c){
long long ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + , n21 = n * + ;
data d;
if (a == ) {
d.f = bc * n1;
d.g = bc * n * n1 /;
d.h = bc * bc * n1;
return d;
} if (a >= c || b >= c){
d.f = n * n1 / * ac + bc * n1;
d.g = ac * n * n1 * n21 / + bc * n * n1 / ;
d.h = ac * ac * n * n1 * n21 / + bc * bc * n1 + ac * bc * n * n1;
data e = calc(n, a % c, b % c, c);
d.h += e.h + * bc * e.f + * ac * e.g;
d.g += e.g, d.f += e.f;
return d;
} data e = calc(m - , c, c - b - , a);
d.f = n * m - e.f, d.f = d.f;
d.g = m * n * n1 - e.h - e.f, d.g = d.g /;
d.h = n * m * (m + ) - * e.g - * e.f - d.f;
return d;
}
}ans1,ans2; void in(long long &x){
long long y=;char c=getchar();x=;
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c<=''&&c>=''){ x=(x<<)+(x<<)+c-'';c=getchar();}
x*=y;
}
void o(long long x){
if(x<){p('-');x=-x;}
if(x>)o(x/);
p(x%+'');
} signed main(){
in(T);
while(T--){
in(a);in(c);in(n);
ans1=ans1.calc(n,a,,);
ans2=ans2.calc(n,a,,c);
o(ans1.f-c*ans2.f);p('\n');
}
return ;
}

It's a Mod, Mod, Mod, Mod World (类欧几里得模板题的更多相关文章

  1. Kattis - itsamodmodmodmodworld It's a Mod, Mod, Mod, Mod World (类欧几里得)

    题意:计算$\sum\limits_{i=1}^n[(p{\cdot }i)\bmod{q}]$ 类欧模板题,首先作转化$\sum\limits_{i=1}^n[(p{\cdot}i)\bmod{q} ...

  2. 初等变换求 |A| % Mod & A- % Mod & A* % Mod(模板)

    // |A| * A- = A* (伴随矩阵) = 逆矩阵 * 矩阵的值 #include<cstdio> #include<cstring> #include<cstd ...

  3. 2^x mod n = 1(欧拉定理,欧拉函数,快速幂乘)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  4. x^a=b(mod c)求解x在[0,c-1]上解的个数模板+原根求法

    /************************************* 求解x^a=b(mod c) x在[0,c-1]上解的个数模板 输入:1e9>=a,b>=1,1e9>= ...

  5. 类扩展欧几里得 zquoj 26659

    求该式子,因为只有里面mod  外面没mod: 所以先是把前面的等差数列求和,然后再减去模掉的部分: 这是类欧几里得模板题 #include<bits/stdc++.h> #define ...

  6. ACM模板(持续补完)

    1.KMP #include<cstring> #include<algorithm> #include<cstdio> using namespace std; ...

  7. BZOJ平推计划

    学习VFK大神推BZOJ,记录一下学习的东西 1004: burnside:一个置换群的等价计数=(每个置换的置换后等价情况数)/置换总数,每个置换的置换后等价情况数就是置换后没变的数 模意义下的除法 ...

  8. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  9. 【BZOJ】1407 NOI 2002 荒岛野人Savage

    拓展欧几里得入门题 两个野人若要走到同一个洞穴,设他们走了x步,则p[i]*x+c[i]≡p[j]*x+c[j](mod ans),ans即答案: 移项得到(p[i]-p[j])*X+ansY=c[j ...

随机推荐

  1. java.sql.SQLException: ORA-12704: 字符集不匹配

    INFO:HibernateSimpleDao----queryForListWithSql:SELECT site_id as id ,MAX(case attr_name when 'siteNa ...

  2. LED 发光二极管压降

    常用发光二极管的压降 1. 直插超亮发光二极管压降 主要有三种颜色,然而三种发光二极管的压降都不相同,具体压降参考值如下: 红色发光二极管的压降为2.0--2.2V  黄色发光二极管的压降为1.8—2 ...

  3. java 判断int类型为空

    int id = 10; if("0".equals(String.valueOf(id)) || "null".equals(String.valueOf(i ...

  4. HashMap底层实现原理及面试问题

    ①HashMap的工作原理 HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象.当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算h ...

  5. Android笔记之调用系统相机拍照

    参考链接: 拍照  |  Android Developers, Android相机拍照方向旋转的解决方案:ExifInterface - 简书 Demo链接:https://pan.baidu.co ...

  6. vue 报错:Cannot read property '__ob__' of undefined

    我的原因:引入组件后未注册 <script> import ComFirst from "../../components/ComFirst.vue" import C ...

  7. 了解JNI技术

    在线文库系统用到了Jacob,它是基于JNI技术实现的,通过调用MS Office的Com接口实现,我这里对JNI技术进行一个学习. 基本上JNI技术相当于一个代理,因为java的跨平台特性,所以它自 ...

  8. sparkStreaming的transformation和action详解

    根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...

  9. LightOJ 1342 Aladdin and the Magical Sticks 期望(结论题)

    题目传送门 题意:n根木棍,每根木棍都有一个权值,木棍有可识别的木棍和不可识别的木棍,每次抽取木棍时,会累加权值,如果是可识别的木棍就不放回,不可识别的木棍就放回,问每根木棍至少被抽取一次,权值的期望 ...

  10. JS随机产生颜色

    <script> function selectForm(lowerValue,upperValue){ var choices=upperValue-lowerValue+1; retu ...