CF1163E Magical Permutation
题意:给定集合,求一个最大的x,使得存在一个0 ~ 2x - 1的排列,满足每相邻的两个数的异或值都在S中出现过。Si <= 2e5
解:若有a,b,c,令S1 = a ^ b, S2 = b ^ c,则有a ^ c = S1 ^ S2
因为有0存在,所以每个数都能表示成它到0路径上的所有间隔的异或和,也就是每个数都能被表示出来。我们用线性基来判断。
找到最大的x之后,我们可以发现,线性基中x个数的2x种选法一一对应这2x个数。于是直接采用格雷码来找这个排列,每加一位,就在x个数中添加 / 删除一个数到异或集合中。
我的实现较复杂。实际上只要把线性基这x个数记下来,格雷码的时候选择是否异或即可。
#include <bits/stdc++.h> const int N = ; int n, a[N], base[], T, id[], sta[N], pos[N], s; inline void clear() {
memset(base, , sizeof(base));
memset(id, , sizeof(id));
return;
} inline void insert(int x, int v) {
int V = ;
for(int i = T - ; i >= ; i--) {
if(!((x >> i) & )) {
continue;
}
if(base[i]) {
x ^= base[i];
V ^= id[i];
}
else {
base[i] = x;
id[i] = V | ( << i);
break;
}
}
return;
} inline bool check() {
for(int i = T - ; i >= ; i--) {
if(!base[i]) {
return false;
}
}
return true;
} inline void find(int x) {
int t = x;
for(int i = T - ; i >= ; i--) {
if(!((x >> i) & )) {
continue;
}
x ^= base[i];
sta[t] ^= id[i];
}
return;
} void DFS(int k) {
if(k == -) {
printf("%d ", pos[s]);
return;
}
DFS(k - );
s ^= << k;
DFS(k - );
return;
} int main() {
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
}
std::sort(a + , a + n + );
int fin = ;
for(T = ; T <= ; T++) {
int lm = ( << T) - ;
clear();
for(int i = ; i <= n && a[i] <= lm; i++) {
insert(a[i], i);
}
if(check()) {
fin = T;
}
}
T = fin;
/// T
int lm = ( << T) - ;
for(int i = ; i <= lm; i++) {
find(i);
pos[sta[i]] = i;
}
printf("%d\n", T);
DFS(T - );
puts("");
return ;
}
AC代码
CF1163E Magical Permutation的更多相关文章
- CF1163E Magical Permutation(线性基,构造)
虽然做起来有一点裸……但是就是想不到啊…… 首先令 $d_i=p_i\oplus p_{i-1}$,那么 $d_i$ 都是 $S$ 中的数,$a_i=d_i\oplus d_{i-1}\oplus \ ...
- CF1163E Magical Permutation【线性基,构造】
题目描述:输入一个大小为\(n\)的正整数集合\(S\),求最大的\(x\),使得能构造一个\(0\)到\(2^x-1\)的排列\(p\),满足\(p_i\oplus p_{i+1}\in S\) 数 ...
- Codeforces 1163E Magical Permutation [线性基,构造]
codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...
- Codeforces Round #558 (Div. 2)
目录 Codeforces Round #558 (Div. 2) 题解 A Eating Soup B Cat Party C Power Transmission D Mysterious Cod ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Palindrome Permutation 回文全排列
Given a string, determine if a permutation of the string could form a palindrome. For example," ...
- [LeetCode] Permutation Sequence 序列排序
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Next Permutation 下一个排列
Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...
随机推荐
- LogInfoHelper
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.I ...
- Mysql命令增加、修改、删除表字段
alter add 命令用来增加表的字段: alter add命令格式:alter table 表名 add字段 类型 其他:如下所示: ) comment '单位' alter drop 命令删除表 ...
- python备份数据库并发送邮件附件
记录下自己学习python的过程 这个是进行备份后,并发送邮件附件进行保存的功能. 相对来说比较简陋,可以自行修改,简略步骤,美化过程等. 示例代码: #!/usr/bin/env python # ...
- JSON Web Token (JWT)生成Token及解密实战。
昨天讲解了JWT的介绍.应用场景.优点及注意事项等,今天来个JWT具体的使用实践吧. 从JWT官网支持的类库来看,jjwt是Java支持的算法中最全的,推荐使用,网址如下. https://githu ...
- SElinux(转)
转自:http://www.361way.com/rh134-selinux/4653.html RH134小结(四)初识SElinux 2015年8月2日admin发表评论阅读评论 一.SEli ...
- 【Java】Appache Flume 中文介绍
Flume 是什么 Apache Flume是一个高可靠.高可用的分布式的海量日志收集.聚合.传输系统.它能够从不同的日志源採集数据并集中存储. Flume也算是Hadoop生态系 ...
- 我写的界面,在ARM上跑
这个...其实,我对ARM了解并不多,我顶多也就算是知道ARM怎么玩,EMMC干啥,MMU干啥,还有早期的叫法,比如那个NorFlash NandFlash ,然后也就没啥了. 然后写个裸机什么的,那 ...
- Producer-Consumer 生产者,消费者
这个模式跟Guarded模式有点类似,不过需要一个控制台限制请求方和处理方的频度和数量. public class ProducerConsumerTest { /** * @param args * ...
- Activiti学习笔记6 — 变量与历史记录
一. 变量的使用 1.创建流程引擎对象 private ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine(); ...
- pointer && reference
关注点在于区别两者之间的不同. 我们可以从两者使用的场景进行区分: 1, 是否需要存在null的情况: YES-pointer NO-reference 如果确定不会存在null的情况,那么使用ref ...