Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)
P3106 [USACO14OPEN]GPS的决斗Dueling GPS's
题意
题目描述
Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take.
The map of the region in which FJ lives consists of \(N\) intersections ($2 \leq N \leq 10,000$) and \(M\) directional roads ($1 \leq M \leq 50,000$). Road \(i\) connects intersections \(A_i(1 \leq A_i \leq N)\) and \(B_i(1 \leq B_i \leq N)\). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection $1$, and his farm is located at intersection \(N\). It is possible to reach the farm from his house by traveling along a series of directional roads.
Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road \(i\) takes \(P_i\) units of time to traverse according to the first GPS unit, and \(Q_i\) units of time to traverse according to the second unit (each travel time is an integer in the range $1 \cdots 100,000$).
FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection \(X\) to intersection \(Y\)) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes).
Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as \(+2\) towards the total.
给你一个$N$个点的有向图,可能有重边.
有两个$GPS$定位系统,分别认为经过边$i$的时间为$P_i$和$Q_i$.
每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次$T$
两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到$2$次警告.
如果边$(u,v)$不在$u$到$n$的最短路径上,这条边就受到一次警告,求从$1$到$n$最少受到多少次警告。
输入输出格式
输入格式:
Line $1$: The integers \(N\) and \(M\).
Line \(i\) describes road \(i\) with four integers: \(A_i \ B_i \ P_i \ Q_i\).
输出格式:
Line $1$: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.
输入输出样例
输入样例:
5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5
输出样例:
1
说明
There are $5$ intersections and $7$ directional roads. The first road connects from intersection $3$ to intersection $4$; the first GPS thinks this road takes $7$ units of time to traverse, and the second GPS thinks it takes $1$ unit of time, etc.
If FJ follows the path $1$ → $2$ → $4$ → $5$, then the first GPS complains on the $1$ → $2$ road (it would prefer the $1$ → $3$ road instead). However, for the rest of the route $2$ → $4$ → $5$, both GPSs are happy, since this is a shortest route from $2$ to $5$ according to each GPS.
思路
太fAKe了。 --Mercury
我们发现,无论走到哪个点,$GPS$的警告都是使用到终点$n$的最短路径来判断的,所以我们先预处理出两台$GPS$到终点$n$的最短路长度$dis1,dis2$,这可以用反向跑最短路来实现。然后对于一条边$(u,v)$,如果$dis1[u]+len1(u,v)==dis1[v]$,那么第一台$GPS$是不会警告的;同样,如果$dis2[u]+len2(u,v)==dis2[v]$,那么第二台$GPS$是不会警告的。那么我们以此来改变每条边的边权为$GPS$警告的次数,然后再跑一遍最短路,就可以得到答案了。
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=1e4+5;
const LL MAXM=5e4+5;
LL n,m,dis[MAXN],dis1[MAXN],dis2[MAXN];
LL cnt,top[MAXN],to[MAXM],len[MAXM],nex[MAXM];
LL cnt1,top1[MAXN],to1[MAXM],len1[MAXM],nex1[MAXM];
LL cnt2,top2[MAXN],to2[MAXM],len2[MAXM],nex2[MAXM];
bool vis[MAXN];
inline LL read()
{
LL re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
inline void add_edge(LL x,LL y,LL z){to[++cnt]=y,len[cnt]=z,nex[cnt]=top[x],top[x]=cnt;}
inline void add_edge1(LL x,LL y,LL z){to1[++cnt1]=y,len1[cnt1]=z,nex1[cnt1]=top1[x],top1[x]=cnt1;}
inline void add_edge2(LL x,LL y,LL z){to2[++cnt2]=y,len2[cnt2]=z,nex2[cnt2]=top2[x],top2[x]=cnt2;}
void SPFA()
{
memset(dis,0x3f,sizeof dis);
dis[1]=0;
queue<LL>Q;
Q.push(1);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top[now];i;i=nex[i])
if(dis[to[i]]>dis[now]+len[i])
{
dis[to[i]]=dis[now]+len[i];
if(!vis[to[i]])
{
vis[to[i]]=true;
Q.push(to[i]);
}
}
}
}
void SPFA1()
{
memset(dis1,0x3f,sizeof dis1);
dis1[n]=0;
queue<LL>Q;
Q.push(n);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top1[now];i;i=nex1[i])
if(dis1[to1[i]]>dis1[now]+len1[i])
{
dis1[to1[i]]=dis1[now]+len1[i];
if(!vis[to1[i]])
{
vis[to1[i]]=true;
Q.push(to1[i]);
}
}
}
}
void SPFA2()
{
memset(dis2,0x3f,sizeof dis2);
dis2[n]=0;
queue<LL>Q;
Q.push(n);
while(!Q.empty())
{
LL now=Q.front();Q.pop();
vis[now]=false;
for(int i=top2[now];i;i=nex2[i])
if(dis2[to2[i]]>dis2[now]+len2[i])
{
dis2[to2[i]]=dis2[now]+len2[i];
if(!vis[to2[i]])
{
vis[to2[i]]=true;
Q.push(to2[i]);
}
}
}
}
int main()
{
n=read(),m=read();
while(m--)
{
int x=read(),y=read(),z1=read(),z2=read();
add_edge1(y,x,z1);
add_edge2(y,x,z2);
}
SPFA1(),SPFA2();
for(int i=1;i<=n;i++)
for(int j=top1[i];j;j=nex1[j])
{
int l=2;
if(dis1[to1[j]]==dis1[i]+len1[j]) l--;
if(dis2[to2[j]]==dis2[i]+len2[j]) l--;
add_edge(to1[j],i,l);
}
SPFA();
printf("%lld",dis[n]);
return 0;
}
Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)的更多相关文章
- BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's
P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...
- 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide
[题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...
- [USACO14OPEN]GPS的决斗Dueling GPS's
题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...
- 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)
传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...
- USACO Dueling GPS's
洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...
- BZOJ3538: [Usaco2014 Open]Dueling GPS
3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 59 Solved: 36[Subm ...
- GPS校时器,GPS时钟装置,NTP网络时间服务器
GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间服务器 GPS校时器,GPS时钟装置,NTP网络时间 ...
- 部署-GPS授时系统:GPS授时系统
ylbtech-部署-GPS授时系统:GPS授时系统 GPS授时系统是针对自动化系统中的计算机.控制装置等进行校时的高科技产品,GPS授时产品它从GPS卫星上获取标准的时间信号,将这些信息通过各种接口 ...
- P3106 [USACO14OPEN]GPS的决斗(最短路)
化简:够简的了.....但是!翻译绝对有锅. 这个最短路是从n到每个点的单源最短路,也就是最短路径树. 那么,思路就很明确了.建两个图,然后跑两边SPFA,记录下最短路径. 然后,对于两点之间的边,如 ...
随机推荐
- 17.splash_case03
# python执行lua脚本 import requests from urllib.parse import quote lua = ''' function main(splash) retur ...
- 运算符的基本概念以及常用Scanner、随机数Random、选择结构的初步了解
运算符 分类 算术运算符 位运算符 关系运算符|比较运算符 逻辑运算符 条件运算符 赋值运算符 其中优先级顺序从上到下,可以记忆口诀:单目乘除位关系,逻辑三目后赋值 操作数: 运算符左右两边的数 表达 ...
- <随便写>进程基本知识
from multiprocessing import Process, Queue,Pool import time import os def producer(q): for i in rang ...
- java_List接口
/** * java.util.list接口 extends Collection接口 * 1.有序的集合 * 2.有索引 * 3.元素可以重复 * * List中带索引的方法: *add:添加 * ...
- input 不显示输入的历史记录
第一次在 input 输入后,下次就会自动显示输入历史记录,去掉这种默认效果的解决方案 <input name="username" type="text" ...
- Pthread spinlock自旋锁
锁机制(lock) 是多线程编程中最常用的同步机制,用来对多线程间共享的临界区(Critical Section) 进行保护. Pthreads提供了多种锁机制,常见的有:1) Mutex(互斥量): ...
- Apache Flink 1.9.0版本新功能介绍
摘要:Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能.目前,Apache Flink 1.9 ...
- 「题解」:[AHOI2013]作业
问题: 作业 时间限制: 10 Sec 内存限制: 512 MB 题面 题目描述 此时己是凌晨两点,刚刚做了Codeforces的小A掏出了英语试卷.英语作业其实不算多,一个小时刚好可以做完.然后是 ...
- 洛谷 P1941 飞扬的小鸟 (NOIP 2014)
题面 题解 背包细节题,wa了一片,上升的过程我们可以看做一个完全背包(多重背包好像跑不过去),下降 过程是一个0/1背包,为了避免冲突应该先跑多重,先跑0/1就有可能产生这个点又上升又下降的 非法情 ...
- JPA 中注解的作用
JPA全称Java Persistence API.JPA通过JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中. JPA由EJB 3.0软件专家 ...