affine
y = 17x-8 flag{szzyfimhyzd}
答案格式:flag{*}
来源:第七届山东省大学生网络安全技能大赛
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdEAAAGGCAYAAAAkSLvUAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAClZSURBVHhe7d35kxzVme7x+Vv8AxFDhCeCG/adsT2MsQdjD+AFxgQMjI0NNmM8gLFlsMFsZhfLZREgg8wYgY0dGgQYpAteAIHEInYEEkYbAi0gRmohgdSSkHSGJ6m3/fbRyarsU5Wl6qzvJ+KNrsw8efJkZlc+ndXV1X8TAABAFkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGTqSYju2LEzrN8wElateTu8vvotah+WzoHOhc4JAKBeXYeoLta6cG95b2vYvWdPay72FZ0DnQsFKkEKAPXqOkR116OLNgaLzonODQCgPl2HqO5CuQMdPDonOjcAgPp0HaJ62RCDiXMDAPUiRBuMcwMA9SJEG4xzAwD1IkQbjHMDYBi9/PLL4aWXXgp7Eu/X2b17d3jyySfDqlWrWnO6Q4g2GOcGwLBROE6dOjVceumlYdGiRa25H1GALliwIFxwwQVh2rRpYf369a0l+QjRBuPcABg2Pih9kGr+woULi3mpgM1FiDYY5wbAMPJBes0114RXXnklPP/882MBWvZSbw5CtME4NwCG1a5du8L8+fOLILVSgCpMFbK9Qog2GOcGwDDbuXNnmDt37liIPvzwwz0NUCFEG4xzA2CY6V26epORhahe2u3Vu3INIdpgnBsAw2rJkiVFaCo8H3rooXDffffVEqSEaINxbgAMo2XLlo0F6Lx588IHH3ww7qXd6dOnh9WrV7dad2fgQnTl66vCMcd/Nxx6xDFjpWnNl9HR7eH8iy4PN/zil8V0Lq2vftRfaroJenVuXl79bjjooj+HT/zswWSd9bsXWy1DeH/7B+HEW54at/yhV/b+IHyt49vMeHh5a0malvv22oa2VZXGoH3QvgBoLt1l+jtQhafZsWNHmDNnTrFsxowZYd26da0l+QYqRBVkCs3fz3mgNecjmtb85154kRCdgLrvRC1cLSTf2TwaDr9y3riAi9uIAlTt1F6sTVmQxu0tqH14d0KIAsNhw4YN4dZbby3uOn2Amq1bt4a77747zJo1K7z//vutufkGJkR9ULZDiFZXd4gqxHxgKqh82BmFo7VLharEfRkL5k53qp0QosDwUDimAtTojlTVCwMRops2vRtOOuVHlYLRh6jKXvKNA9D6LFteJUQV6La+yt8ha5n6X7nqjXHbiX8IsB8O4rK+4pevqxyDquoM0VQYKujKQtTmq+KgFIVo6s7SQrTTXaeNx17ujcfhQ1SP1SYOctuWBXbcZzwGtbNlqf4ANN9AhKgFSae7ULEQVeBY+ziEbdqW2zo+oDqFqNZN/S7Wwk/LNQZtR9sTLfPraNovj/tM7bfG4cfZjTpDNHXnaKHj7xptXuou01ibshDSttoFVWq7WkfztEy0np/W8lQoWvimxuTXifvTOtpHH9wAmm8gQtQCyYdJmVQgigLLh2AsDrR2IRoHptH4rI84ECUO7zgQ437j5aL+1IfvN1ddIZoKGKN5/u7MygecsbY+jMrEd30+lBVscUjrsebZduPQi6fj9qmQVdvDrphXfPWBC2B4Tdo70Th8UiGqefYyaXzXqPV9ez9tYejXjfuoEqJxcPv9tP1IbSPuN1ddIZoKrRQLpk5tFUoKtDi0yligqn0cfp4fZ6fQ9MttmQ9tK2tjL/1qHmEKDK9J/TtRz4eo9ecDLA60KiHaLtSrhKioXx+QGofYfth0HeoIUQs8hU4nCjEfXO2ov4mEkQXkqv95v1hvoiEq/m5SbVXSLphTtJ7C1LYFYHgMRIiKwqTKHViVEI0DU+J57UK0bBtelRDVV7+NWDyGXut1iFq4VAkLhZaCJQ4iH2yeD7QqfD+pPm2sFoypELW7yWsf+MtePxiUjbNMqn8AzTcwIWrB5e/WjMJG8xVKZQHnQzQOOH3VdNUQFfVh2zR6bNuNtyFxiC54YmHRxu5CrWz/bFx+fzVv6v+7fmwc3eh1iFow+rBJsbtVCzAvtczmpe78bJt+WTyO1Prq34ea2vppo3apu8hUn5p32sxni3bqz++DHk8kdAE0w8CEqLHw8uXDTV87hahouV9/yauvhSlnnVc5RMVCzvqxgFQfVUJUfcY/EGjar2fr2Da0TOH71tvd/8f1Xp4bu2vrFBQWPu3uKq0vhZdVKkBl5fr3xkLTKhWGtl1rE2+/LESt79T243Fq/fueWxNWvvN++O0Tq8Yta7e/AJpr4EK0KRSSCkcfslI2vw6cGwCoFyFak9Qds82L73jrwrkBgHoRojWy0LSXalU+VOvGuQGAehGiDca5AYB6EaINxrkBgHoRog3GuQGAehGiDca5AYB6EaINxrkBgHoRog3GuQGAehGiDca5AYB6EaINxrkBgHoRog3GuQGAehGiDca5AYB6EaINxrkBgHp1HaIbN21uPcKg0blRkFIURQ1D7QtdhygAAMOKEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEgRrs3r07zHv0sfCvRx8b9tv/78Lff/qfwvSbZ4St27YVy/X11l/NDId++WvhY/vtX9QBn/iHcMxx3wzXXn9DeGnRy2HPnj1FWwCDixAFemzXrl3h+htuKsLTAtLq+BO+E+YveDx88bCv7LXM6p8POTQsXbqs1RuAQUaIAj321MKni7tK1d33/r4IVRkdHQ3/ddvMsbA88aSTw+urVnHHCUxihCjQQzt37gxnn3NeEZI33PSLvQLyxuk3F8v+7d+PD+vfeac1F8BkRYgCPfT222+Hw796ZPjkp/4xLF68pDX3I9u3bw9TzjyrCNFZd81uzQUwmRGiQA8tW74iHHjQweHIo44JIyMjrbkf2bZtNJw+5YwiRPWSL4DJjxAFPqTAu23mHeHoY78R/vbjBxRBp3fUnnzKD8KCx58Y+71mJwpHrXvq6VPG3olrehGi1oeCWoFttmzZEm7/9Z3jxq93/t41+56wY8eOVqvO9PLza0uXhosvvTx89vOHFP2ovvClw8KVV18T3nxzNb/DBRxCFENNQaffU1rwlNVJJ58SNmzY2FqrnIWogk6B59URogp3BaUC34/X11k/O2+vsaRs2rQpnP/zi5LvKrbSsgsvviy89957rbWA4UaIYmgpQE/74Y+Ld9FOvfLq8OpfXiveGGT0+PEnngxHfP3oIkD0+8ytW7e2lo6n33HGgdNNaTwpPkQ1XvtTmv/4/qlh8ZJXx70TeObtvy6WqR59bH4xv4ze5KQ3O2nbetewQt4fC+33n/78UPEytdpU/aECaDpCFENNL+PqpdB2LGAURnMfeLA1d7x9EaIXXHhx+PgBnwz/fdfdxYc7xBSoumtUf3rHsA9FTwGpHxC0f3f85s62L10rnC+74qqiT/Vd9WVuoKkIUaCC++fM7RhG0u3LuRbGnUJUbRR6CtB2v6PUdtTuqGOOC5vefbc1dzzbN/3Os0ooWugqwHWnDgwzQhSoQH+uoj9b+ea3vxM2by6/c+1niOol3E530Stffz0cdPAXi9LjmPZF+/SpfzyoeHm4queef6EI0U4/VABNR4hi6Onu6/kXXizekfrVI48qfkeqd6Ye+41vhZt+cUvxblV9DF/Zn654/QxR3UF2orFqzPG7eY39cKDfcb7//vutuZ3prlZ3tzpe/G4Uw4wQxVBbsXJl8WchCqV29X/+76eLl0UHKUTL+vA6haiNN7fK+gWGBSGKobV8xcriw94VBgoavftUd1j2O0a9TLl27bri944WtE0LUb1rV33lFiGKYUeIYijpJdxLLptaBIFextW7TttRUCgwmnon2ul3vQDSCFEMJf0eT7/P053oG2+82ZpbrqkhavtVthxAe4QohlLVUDR6Y9FnPvv5xoWo/lxFH22o/vQ3ogAmhhDFULL/tlLlTlS/I9Wn/yhomhaiog+Q0Jumqv4zcB27n513QfHu4Il8Li/QRIQohpLeNGT/9/Oa66aVfsiAPgno3vvuLz6btonvzhX78AT1qU9mWrfurdaSvekzc3/0458UbaffPIMPo8fQI0QxtPS3ofqbUIWjPnj97fXrW0s+ClmFlD5HVm0eePCPxd9S6vHsu+9ttdrbZAxR8Z+dqx8Yfn3nb8d9kIOC9g9//FP43Be+VLRp9znCwDAhRDG0dBellyQVjAqGVH3xsK8UYavwsru1soCTyRqiUvW/uOjjATu9mxkYFoQoht7qNWuKYLB/J6ZQ/d5/nhYemffouN/5PfPsc8WdWFNDVPSDhf0/Uf0PUW1Hpf9Net20G/l/okCEEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEgRpt2LAxnHTyKeFj++0fpl55dWtue6Ojo+H+OXPDsd/4Vthv/78r1j30y18Lt8y4NYyMjLRalet2fQDVEaJATdateyscf8J3ihCrGqJvrl4djvvmt8fWievAgw4OTz/zbKv13rpdH8DEEKJADVasXBmO+PrR4wKsU4iuf+ed8G//fnzR9ouHfSU8Nv/xsHPnzrBr166weMmr4cSTTi6W/fMhh4alS5e11vqrbtcHMHGEKNBjL7z4UhFUCqxPHfi54u5Pj9uFqILu6muvbxtyW7duDaf98MdFm//4/qlhy5YtrSXdrw8gDyEK9MiePXvC/AWPh7//9D8VQXXUMccVYXb6lDOK6XYh+sYbb44F76y7Zrfm7u35F14MB3ziH4rfdT762PzW3O7XB5CHEAV6ZNmy5WN3nbrj27RpU9i2bbRSiCr41OaQfzm8+L1mGd1NnnzKD4q2F1x0SXEHKt2uDyAPIQr0iO5EfzXz9iIsFVZSJUT1e8uzzzmvaDPlzLPC9u3bW0vStA21/dejjw0bN27sen0A+QhRoEZVQnTTu+8WL/2qjX6v2cnjTzxZtP3MZz9fvFzc7foA8hGiQI2qhOjbb78dDv/qkUWbdr/PNM88+9zY338+tfDprtcHkI8QBWpUJUSXLV8x9rvUKiHo2ysEu10fQD5CFKgRIQo0GyEK1IgQBZqNEAVqVMfvRPVhDh8/4JNjIdjt+gDyEaJAjaqEKO/OBSYvQhSoUZUQ5e9EgcmLEAVqVCVERS/Dqg2fWARMLoQoUKOqIcpn5wKTEyEK1KhqiHb7X1i6XR9AHkIUqFHVEBX//0A/94UvhYcfmZf8f6D685TFi5e01vqrbtcHMHGEKNBD/m8wO1UqVPX7zOO++e1ke5X6fvqZZ1ut99bt+gAmhhAFeqjbEJXR0dFw/5y54fgTvhP+9uMHFG0P/fLXwi0zbg0jIyOtVuW6XR9AdYQoAACZCFEAADIRogAAZCJEAQDIRIgCAJCJEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEAQDIRIgCAJCJEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAfE1CuvDgcedHBYtnxFaw48HRcdHx0nABgUAx+iTy18eq9w0byP7bd/smbdNbvVamLsIm39tLtYx9vvNvzU3+lTzgjbto225tRvZGQkHHnUMcX49VXTE2V9aPx10Xmwc6rtnfDd7/GDBoCBMdAhqotn1ZDS8iO+fnTWBTZeV2GmUEsFstroQm6howDJDSGj7eSGf45ehV/doWbnwcap6XPPv7C27QHARA1siOoORBf65StWVrpQq33uS30KsHjdsv7i+b24i1R//QzRXoxZ4h8oei0OaX1ViHY7bgDola5C1O4U4rDp9u5M/dq6Ve52tMzfSeqr7l7tDkZ9aDypUJR4vHF/RuvHL+GWBbC1s37tWNl8K207vhPVPFtu6/s+rdQuNX/2PfeO23+xY3L5FXu3V9k+qJ2CatHLrxTttUz92PqatrFqvsanr7ZM/djx9vvk55Xti+irzdM4/HmIjxMA7Gtd34nqApd6KdQuisZfhH11uiPSxbdTiOqibCFgtH31rfX1tdPF11+8y8aU2jdt1/qOw8PGoPX8GON90nzr08arrzatu3HP9+X5+XEbPbZx+cfipzUOnU+749P8eNr2SY/98dL+2J2pbyea9uMxmmfztW37oUG0TjytAoBB0ZOXc+OLsL/wdUv9tAtRzU/dNerirYv4t048aewibfMsLDVmm+cv8NoHBX7cp8aifbPAs3Vt330giOZr+cjIpnHt/JjV3vqTsv0x1qeFk4nnq0+bVl8WbvGYbdrGoPmdgsz6jZf5sfttqlLn0PcVj0P8PkiqDQDsSz0JUV3U7GKqUNDFMaYLaB13onFweZqfCkPPj92UXazjsfh2qXH6samN32+bn1pPj+1Y+TGkxiqp+erDB7Wdk3jf4u2rnY1N2k37fsWPQ6XHmhf3IfGYtX2Nw+9DvJ4e27gBYBD0JETtwqyX/OILYbfUVxwyxgdFTBdgjem2mXfsdQH3rJ0Pch8AXnyh92NLLVMfPmRE29FxsjGrnbZv63navo1N7VP7Wjbfzon23e+fH7PE66u9H3PZtPXvl+mx35bapr4nUmOOQ1VfNa0+RH364wYAg6AnISq6COrOyV9UeyG+6Hu6wNpF1lNbu3CnLtie5uuuzwem+vRhYHyoid+OXfStnxun31xsV9MWOP5O1I6Tlvt90Bt6rH+10bK4b1M232j9+G7WjzmetnFa+3bTqW3beI2Wxd8TZWPWOOw8aTt2DmxdzSNEAQyanoWoLo5lYZdD/cQv//qXZnVxTb1Uaxduf5HWBVkXbguOmK1j5YPAUztd2HVBt2nfr4WW6pF5jxZtH52/YFwYiMZswaX5tswCxvqwbWk8Ns9K65TNN/F4xW9bfBvbvuZJu2n1E/9wovGU7adpN2ZbpvOqHyY0Lts2IQpgEPUsRO2i3mQ5+xgHkagfH5A+eHpF2039UKNx+GBds3Zt8bXX1L8PwW6lAhkA9rWevbEodVfYNAq8nFDQcfF31T7ELGR7+QOIBViqTwV2HaEd07b9fnZDfem49SqQAaBXenYnCgDAsCFEAQDIRIgCAJCJEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMtUSovYBAvEf9ZfNL6M/rq/yR/b6MAN9JJz/w/5uPgDCPlShmz7qZMcldRztGPfqgw4AAOV6HqJ2EbdP57HSRT01X/PWrVtXLI+XtSsfrPGn8FjIxFUlEDV+jUVf9ZF46qubQIo/rUjlxz5RGlf8cX4bNmwM1027MezcubM156MfBKr+sAIAyNPTELXA0Ievxx8Wbhd1BYgee2oX30mWsZBLBa+2rX99psc++PRV09p+Wch3qpxAigNPX9v9R5kq/LH64IMPwtXXXh+uv+GmcM75Py+O69Kly4p2Gm98nAEAvdWzEFVg6KJtwWVhqYu5Qsgu6Fre6b9xqG3Vuz9/p6g+FVrLV6wsgtJCW9uvevendToFZtXxqR/fzsanY5XL769s3LgxfP/UH4RD/uXwsHjxkmKe2LEHANSntjcWWXjpYq7w0F2iBalny+yOr0pZP3ZX+a0TT9qrb+u3ahiL2nUKeNtmp4DScj9mHY84AMWOk28n8foqO5Z2J/ree++Fiy65PEy7cXrx/0vP+OnZxUu7WqbtWF8AgHr0NETt4m0XfM8vS13cyy78ZfPtpVIFqP73pLZnd8PahoJO6yhI9dju/jTPQsmX2mmZtmVtu6Wx+LDVY39c9Fjb0z7a/igkNQ4/Zt+Pllkfe/bsCbt37w53zb4nPPPsc2HXrl3FfFEbtQUA1KcnIWp3fSo91gU8FVQKjLVr1xUBoWl/kZ/7wINj4eHXsT49hY6FhN2V6XHcp7G7Or9MARUHpr/L65aFvw9RjdkC0PbVtq9t2+9LtY6Fq+9H69j6nWi9TnfVAIDu1PZyblWpwLVwsQCx+RYguvO0sLGQitv6skDyUoE0kZDqxMbjg1t923j9Y/GhqvI/TPiwjdcro3Z+2wCA3utpiOri7sMrVVUu7FWCIr7T0tfUXaT6SfWVChm103wTT0+EQs+/M9eHalnApsI+Hn9q3LFU/wCA3utZiHa6cCtM/DtT47utKuVf2o1DMw4b0bLUS5ratsZqYzEauwVZWQja8k5S++v7UxhaQGu7/s1R2g+/335MqXGnqK/4eAAAeqtnIapwUMj5i39cFhIpuuBrff2dp4JC4dcusHxoWsCltpnqQ6Hl21g42z6o3ziE/LIq1N6HqKb934haf9q+bcu++jHbvmnMWid1t51i/QEA6tOzENVFuyxgfBAYXeB9kNm6Prx80FjYSHxXVxYuNibbftxPitqrTSp8J8Lf1U6ExubHp32z8J1In/44AgDqsc/fWNRUFuATFQe+3SUbhaN/o1FM87W82x8CAACdEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEAQDIRIgCAJCJEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAy1Rais+6aHaZeeXVram8jIyPh9ClnFF9FbT+23/5tS+23bRst2ufQuupDY4tp+6n5MY33yKOOCU8tfLo1p5zapPYjVZ32rer4RGM84bvfC8uWr2jNqUbj1b5pfW3LtqdtVz32VcYZj89v12helW12amfnPHXMUxX3pX3RPhnrT9utKvd8iLZ94EEHt1233Zg6HR8tj4+9Hmsdm1dl/BP5/jQ2bn98gclmn4WoqI09geMnYacnfw71n7pwzn3gwWIc8fzU+DVWta1yEa26D1XaTeQiNdFjZ/vk19G24vNRdky8quOML8x+zPZ4zdq1e+1DfPw77avma7m1b0djOff8C8f60ra0rr6asu+hdmMQbb9TGHo2btUj8x5tu267fWx3fLQvdj7Vzh77/da8KuPudN61vvpJHbuyqnLOgH2t6xC1J3DqSZAqC01jT2R7EpZdpOL1JkpP4iO+fnTxxIx/qtY2daHSfrS7EIjGUHeIpi5IqXma1nx7nDpu7UrbteMSXyTVn0pt1NaOv52rMqlxet1eTNW3P1adjrH//rR+4nWszW0z7xgXorb/ds61b+onta7ts7X1429XqYDSNrXMH0c7bvGxtTFZ6Xtb5efFpT7i9ay0L2vXrhvbBztmtk6ZKufdH1v16/vz/dsxtW0Dg6xnd6J6Evhv+vhJp2n/JIufdDYdrye6MOlJpa/GLjRVn2jq09r6J7QFgz25fbsUu0hW2a6NsUr5C7MdCy81L3WstG+6iPpjVZX6s/Hogq1jFPdvfNuqpXXii2k78cXUgiTVd1wW+taHXm2w7yHtk8Zg47Bjpu34eTdOv7nYrsZtAav5mra+9NUfI5tX5firjf+BzvbPxp6ibcXBGx8nT/O0TG2q0L75Y2W0XS1TpY53u9I6ov6q/IDRbv+BQdOzELUniD2R9cSxi4vmadmil18ppsXa2xOs05M0fmKpT81PXTjK2DpVqqzfKhcCv99VLmBxOzsWXmqepm1bJm6n8cYXRE/tU/tQVu2Ot13M43GmdDqO8fm29vH+djrGNia1s7Z2PDROK/WrYLIQ1TwbS7xNseX66qlf69+oTWqMamMhqm1o/xTctt2y0hhtP9Sn38dY2fGx4xn3rbFaf35+HNyetY+PRTsalz+uWjd1nIFB19Pfifonhj0p9ATTV39RMfFFROuknkxqpydpqo9u2TZNfEHSMn8xsUpdsGJlF7D4AhKzY+Gl5mna96PjGN+FVj126ivu34uPS4q2oQtzap+rUv86vqn9Tx2zsmNs/LjtsfVj0xYQKgtRW647UJsWtbG7RfWpx+2+HzRfbXO/dzudF/H7ZQHrv1d9aZnap74vqmwrpcp513FIjadd5YwF6LeuQ1Tf6KknQLtKXQw1T0+0sv66uRCZiTyRyy6KdsEoW+6pje1Xahu+/DHR4/gCkpqnab/eRM6FX0+qrttuv7VMIa6LqcJmojSmdnc8Kdpmu4u3BYza2bnz30vab1s/DlGNJ97/1LYsWC+5bGqxPF6nU7Ubv8anasfGaedUfWk/4uOo5daXHYt4LFqu9fwPY+pPYywbx0TPe9y/2DbafX8Bg6ind6JGTzZ7UrZ7UtgFUE+m+Elfx5PKX0SMpssuDil28akyLrXRNu2riae1fT+dGmdqXrxeisZrx7gd9RX373U6H/64qNRW68Q0Xn/RrlK2j/r+sDu/TmXr+HFrnpX2VWPWxVxvrNK0+rcQVXv14/fX9jHeliq1v7adWNnxade/L/+DhrZhb4rzY423EU9rW5rWV2PfAz7kNK1t+r49G7OWx9uIVd0/tfHjAgZZT0PULnL2ZLQLVtkTyy4y/kmrdrqQ6fenWk9vclC7sidmVVpf/aWetKkqeyL7i0aK7ZPYcVDb1DZ8aT3j+zCpeZr264nG5y+OftrGk6L5qXHF1W6/O+1DO50uwGU6rWfnXS/L2ruQdSwsPLW+ff/psb8TjcXH1qTGoP3X8YrPj7aVejd0mXbnzNg+ahyenRPNj7+f9TgVaNqWxmY/rHTatm3D6HFqHc3X9vTO39RYxY7v8hUri7a+X2BQ9SRE7QnpLyR6ItmTwJ6Ufrm+2t2n2toyPbk07S8MqvgJpXl6kqeejFXYxUxjiJ/0WlZ2MbV9TW3Xj7nd+ONpf6xEj+MxpebF69nYFBh6bPM0Dn21Mfl1jPqK+/f8/ng2X6XHxsbSrk9P/cZ9VNFpPRtfHAjx/uqxznl83nWstK72RRd39WXH1rQbg5ZpfSv1E6/fTjzOFNvHsnOT2qam432xben7336oNerbf99Y3/F+a5125z0eq9pZv6kxAYOu6xDVEyD1JPVPDmNhqvn2RNWTSfP0VX1omZ5o8ZNN71rUOkbzdVGy5VXZGOzJbxcOe/LbxS4eu7FxpS4S6tvuMjQuOy421nblt6fHqTapsvVs/PHxsOPsz4/Wsf032p9U/3H5/m2/UsdC7Filvj9i6iseUxWd1rMxxMclRcfKQtT2za8Xf4/4KhuD9aPvOfVv59af73bs+7Od1D7a+dR2/GOjfdE6/rzYtlLfM7ZMbJ9sOmbjSZ13P1brx0rPnXi7wKCr5XeioidYuwuFLdcT1v4ez4LSnlz+Sejb5dC21Gd8sfMXh6riJ78v60vbUzvR1yrHYqL8en57Omb+Yp/qW/P8fuuxn47FF2qtXyUcxY5XPI54nO22r3WtXdX6KCQ2jRt3rMqxMmr7UZ/j91l92/eVvk8VmJ36i49JvF6VsnOmx3YubDp1LG2Ztun3xearNC471zZP5X8IyD3v+ur7tPnGHwM7nsCgqy1EAQBoOkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEAQDIRIgCAJCJEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEAQDIRIgCAJCJEAUAIBMhCgBAJkIUAIBMhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAydR2iLyxeRlEUNVRVt1PPPI/qY3WjJyG6efNmiqKooah+hSj6gxClKIrqYxGizUKIUhRF9bEI0WYhRCmKovpYhGizEKIURVF9LEK0WQhRiqKoPhYh2iyEKEVRVB+LEG0WQpSiKKqPRYg2CyFKURTVxyJEm4UQpSiK6mMRos1CiFIURfWxCNFmIUQpiqL6WIRosxCiFEVRfSxCtFkIUYqiqD4WIdoshChFUVQfixBtFkKUoiiqj0WINgshSlEU1cciRJuFEKUoiupjEaLNMmlD9J13/idcdf3NxQ6kSsvU5omFz4ZzL74qrF6zNtkPRVFUP4sQbZZuj/U+D9FbbvtNcrkVIUpR1CAVIdoshChFUVQfa7KG6K5du8JDjz4ezr7wiqL/M8+/NNz+u9nh3c1bWi06e/fdzeG8S68Ov/rNrNac3njzw+u7xnXnXb8vxtlPQxmimqcdtzrj3EvC4iV/Gbee+rXl2s60m3819hKxb0dRFDWRmqwh+sj8J8MPz74w3H3/A2HVm2vC7+f+MVw49dqw/sNrYlV1heiK198IZ553afivX88aC9GdO3eGG2fMDA/86ZFiui7dHutJF6KajkNTffg2mvaBaYFKiFIU1W1NxhDdvmNHuG76rUUAKghz1RWiKZu3bAkXXH4NIVpWuSGq9vE6PlhV51x85biQ1brqgxClKKrbmswhetpPzg+/+e97i4CKrXpjdXE36ENLYemD10J02i23hV/e/tvwg59eEM4475IP73KfCHv27BnX5rez7wtXfnjNVZuZd94Vlq1cFS664rpi3/T1jdVri/Zi27ZwXr12XTj3kquKtlZ1hWm3x3qfh6g/SFbxnaef9mV3mCoL0XvnPJhsr7aEKEVR3dZkDFF59oVFxcu56lthesV108Nry1aMhd9EQnTKzy4Kf3jo0fDq0uXhqmk3hynnXByWfxiSvo3qmedfCn+etyD86MP2WkePn3rm+fDTCy4P19z0yzA6ur1YJw5RvaT7yquvFQF9z5w/FH1a217r9lhPypdz4+D0d6KEKEVRddZkDVGF5Ztr1oUZH95BKtC0DYXq4leXFssnEqIWdvLci4uKvv748GPFdNxm2+houPqGW8ZCU+O49Y7fjes3DlFJjacO3R7rSRWiZesQohRF9asma4h6utOb+4eHijtSvewquSG6ctWbxR2jrRe3UXAqQP2dZ9wvIZr4RutUOSGq0mPN823UB78TpSiqHzVZQ1R3hLt3725N/TX87A4yN0SffPq5YrzzFjxZTBOiE7Qv7kR9GGq5DoLKwjW+69S0lnfaFkVRVKeajCG6cWRT+PnUa4vfg76waHFYunxl8ecjZ184NaxZ91bR5p0NG4s381x85fVh8V+WFn9TqhBLhahq4bMvFH3pHbS6cbE/lelViOpvR39y/mVh6rXTw3Mvvlz8EFCHoQpRTdtdpQWn3ZnqTlQv5dp6FpwqPbay5RRFUTk1GUNUL98q9C6+alrxblmV3jn7xuo1rRYfWbT41eJDD7T8ltvuDLPumZMMUb3DV28o0jj1Tlvd1ZpehajGPPu+/z/2DuD5Tz7dWtJb3R7rfRai/SwLbB+yFEVROTUZQxTlCNGo7OVde2nX5tnvTH1biqKoiRYh2iyEaKJ0x6kDY0WAUhTVqyJEm4UQpSiK6mMRos1CiFIURfWxCNFmIUQpiqL6WIRosxCiFEVRfSxCtFkIUYqiqD4WIdoshChFUVQfixBtFkKUoiiqj0WINgshSlEU1cciRJuFEKUoiupjEaLNQohSFEX1sQjRZiFEKYqi+liEaLMQohRFUX0sQrRZCFGKoqg+FiHaLIQoRVFUH4sQbRZClKIoqo9FiDYLIUpRFNXHIkSbhRClKIrqY/UrRKn+VTd6EqIURVHDVIDpOkQBABhWhCgAAJkIUQAAMhGiAABkIkQBAMhEiAIAkIkQBQAgEyEKAEAmQhQAgEyEKAAAmQhRAAAyEaIAAGQiRAEAyESIAgCQiRAFACATIQoAQCZCFACATIQoAACZCFEAADIRogAAZCJEAQDIEsL/At/4kHW5116+AAAAAElFTkSuQmCC" alt="">
本题要点:仿射加密
看到这道题目有点懵.....题目是affine.....查看中文释义是仿射。
查阅资料,什么是仿射密码呢?
仿射加密法
在仿射加密法中,字母表的字母被赋予一个数字,例如 a=,b=,c=…z= 。仿射加密法的密钥为0-25直接的数字对。
仿射加密法与单码加密法没什么不同,因为明文的每个字母分别只映射到一个密文字母。
仿射密码的加密算法就是一个线性变换,即对任意的明文字符x,对应的密文字符为
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAALsAAAAbCAYAAAAkjP6EAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATISURBVHhe7dbdUWs5EIVRnnjklQCIgBAIgRiIgSgIgjCIgjgIwzPrDl3V9JV05J8pMNZXdaosH0ndvXtL9tVusbgQltkXF8My++JiWGZfXAzL7IuL4ezM/v7+/vlpm33mXhK/TZfZes7K7E9PT7uPj4/P0TbPz88XYXiavLy8TNW6r4an5vX1dff29vY5Og2zfT4bsxPo8fHxczTP3d3d56ffiSY/PDzsrq6uNk10qIanwAETW57MGcjp9vb2z/c3Nzd/Du0W5tRaZ/p8NmZXzFYzW1jnNvnN0IVZtjhUw1OSD6UDEAbXozB9L0e/Sr1+zvT5LMxOlOvr68/RfrhF3Hy/GTUyzYhjNDwV9VDKOxtbjt63fn3u7++HfZzp85TZ/VR+539fhTi5h0DM727yIbjtZv9yaPJWo4/R8FSoKR9K5q54X2uhg1t/xEyf/zK7QHGKwuB+PkY3RxyG0TMiTqVkWz9F3lUBIM+cFzHtkePFbdESFjXP1rMFfeSnIfLJt9VMji32Mbu4NEToaH2mpyHi7wHoVM1l71oXom7vfG4hD3ubow+9HAK5Ry2g0+ivTbDVZ3wxuw1NjoU5QG5YRUMVNHp6EDYaY15LDN/XxhPEwQhxfM57ZUZiHZM75BsxozHBPjlWzKk19xDT3mLoHaPWtepo7cekoYH8jc2Lfhvbt2poTYzF9r4ardYghr162I9WGfrG4VWXz70DM+ozmn9jJNQKemokFmYiVOv2gCJ7N4e87NF7jzDDqcn5Q0PyOJjJsTJr9jhgeW9GrLG2NPTEe/3Pe6hTjEBu3getyzH6mdkyI41qn8LgsU5s++T4ge9HfW6a3UZ5M4FGm0hSUqOnhXUaSlzC1pshGBmlNqLFSORDcweNiB9EPZWZHJlWU/NjTR63ehDNz9oxWc4LIw3Nz8ZUl3ixp3XWBzTJN3SYPeeQDw/MH2lgbks7eeTYsHdrL9/1+oxmdIXnRHsiZRQ6elpILovWI26eFgywWeS/75mpRyvf/PSwb7yPZrYMOZNjhVlnbnZz8sUkH7EqIw3Nz4ej9t/+eVxrsTYfFjBpzJGTA1LnBOZVQwfW1XdxwCu+G/W5aXaJRvEa1WrgscTP7yi5gNAtMYgYze4Zg5AtYY5FbDpBjDB7mD+YybHFrNnpko3YM3VPQ7lHHZBvrSMbN/oWY6itddNHbyOnfCgDcxk6x8tYVw+JWDlnzPS5+ZYohCZ4K8FKnNrRUwlBQiTJ5qZliJaLM3YA5WafKF6+dQ/vRjUckjtCXDHFiNvb2Lt9cmxh3ozZ5RfzxO0Zp2oY1EMgbq7ZuuhTXHrGUYP39RDlNcwac2hRa4/8xfVYY641iL3UFqixamPdllebZhdAksSJoP8HElaI4hQ6giiRC8HyGMZyrhBga+9DETOaxwiaEE3ZJ8cWcp4xexwiGtq7d0Oi5gNrsj7yzoZUj3VhdJgvJm17OVojp8jH5zrXev2Px57yycaGcdTXiznT5+69T0TPT0EhuQmzMODiPw7V8ByY6XPT7HGSfhqzt2KguflGWuyv4Tkw2+cvZveT42eu97/vu5FT/YkbsYz+N/tqeA7M9vmL2Z36n2r0xeJYuv/ZF4vfxjL74mJYZl9cDMvsiwtht/sHcANZAbXsvesAAAAASUVORK5CYII=" alt=""> ,其中,a,b∈
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABcAAAAVCAYAAACt4nWrAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAADjSURBVEhL7VLbDcMgDOxQzBVWIZugLBIpW0RiBxcbOzxq2pCqlSr1JD4I5F74Bh/En1zFd8i32YAx+nIrXxrEU+ckOHkIvB9FlzwsNrq24Hf+cAE6+ereqkOgkG/gsOt5431G/S4u3sxISfmM/23IA/gpHmo9Y5pCkIRkT0lFLHFg6oo8qdeOuigIUUirMJMP9kxGKCE6jQ+/pP+VWlLPdjk5dLsHe0xSW2XiyrWw696qRIm4TJg7Fsh7NA/6AmTicfaRrDQwTl5V0QBFpZYi2Wnyao6PlSerPJcUY7UM4lfJAe51kOhJviclAQAAAABJRU5ErkJggg==" alt="">,且要求gcd(a,26)=1,函数e(x)称为仿射加密函数。
注意:
注1. 仿射加密函数要求gcd(a,26)=1,即要求a和26互素,否则
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAALQAAAAZCAYAAACYTwQCAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS2SURBVHhe7dbdUfNIEIVhrrj8bgmACAiBEIiBGIiCIAiDKIiDMLz1sD5b7WYky8Zb2P70VqnKo/nrPn1m5JvNysoVsRp65apYDb1yVVyMoT8+Pra/9nPI2L+Ja9NllM9FGPr5+Xnz+fm5be3n5eXlrzA1TV5fXxfleqiGp+bt7W3z/v6+bZ2GUZ3P3tBEeHp62raWc39/v/11nSjk4+Pj5ubmZq9RjtXwFDhE9hYnAwYx3d3dfb3/8+fP18HchzE9117nsze0gPcVbIR5boVrhi4MsY9jNTwl9eAxeUysRjH2VIy+LlP17O/P2tASv7293bYOw23gBrtm5MgYc/xEw1PRD564q3nFqH/0FXl4eJitY6/zrKF91n7zv6hgncBjINhvF/IY3FpL/x4o5L5D+xMNT4Wc6sFj4I7+ngsd3N5z9Dr/Z2iL5TTExK76uRsghp975sjpEtDoc6KvJwlx1rgIZo26X079SDz0OEfPPugjPqKLp946S2IccYih7UtDREfzK1MaIp9y0KkbyNo9LyRvfX6PEIe1jVGHqRiC2JML6DT3NyT0On8Z2iQv0lkXqUXpKJqg554piBfxjRsl7H0vrqSZPwL4XdeqzAnyk9gh3uwZ8cMhMXaM6TlPYU9r20PtmLHPlcdoPUaMBuLXNi711rZu19CctO2tP2YKPQd7WGsK69GqQt8cUHn5PXUoaow7fzlsOlr41Ng8hiHG6BaARKZuAHFZY6ofKfipqfGD6LUdlsTYWWroHKK6NrP1vfZp6Em/+tc15GmPIDb9YXQBpp6VPqZDo16nmDjz7G2dun/wPvN3DG1wnWCxOUMIxMZzzwjzFI2AxOsnPMyZoYs9Yk7IY2MHjQgckk9nSYyMqXD1Mae2RzVIgat2jFTjwpyGxlfzyct+WdM88wNN6k0bQ9cY6gGB8XMaGDvSThx1b1h7tJZ3qfNOr+RqMFNCVCQz94wQQBVmitwgIxS5JjJCP8NMMYq3PlNYN/0p2Mh0S2LsMOSSG9qYevmIx16dOQ2Nrweg19/6td1zMbceCDBixojJIehjgnHdtMG83pdD3PEudd7pFUwSVIxRkX5KPpVzRgvEHCVMqBR0qvjEGiX/U+xNJ9gjho7Bw5IYRyw1NF2q2aaMO6Wh2JMHxNvzqOZM3dKG3EY3dmqbmOrBC8Yybd2vYl4/CPaqMaPXeafiEicmUUdBdHL65p5Oko4QAqqFqRCmJqDtkInNOklQvH0NfXM5HBM7IqA97ZFbWFvfITGOMG6JocWXcfadMkfXMHSj27fmbF7qlItNOzno7welzmHIjKFFzz3x29djjrHmIGvJLcixa2NerfOOoS0iEAJk4f8DQQlWApKZQ+KJhSi1DW0xdyS5b+1jsWcKpNiEjvCHxDhCzEsMnYNCQ2tP3XTo8cCcqo+4q+nkY17MDOPtSdupGM0RU+Lxu481X/3zWFM81bzQTn5Te/Y6f/smE8pzLgi2Cr0UJlv5l2M1vAR6nXcMnRNxbiy93YIC1ptl5XANL4FRnb8M7fPgkzT1P+y3EVP/HM2xmvk7h2p4CYzq/GVop/dczbyycgjf/kOvrFwyq6FXrorV0CtXxWrolStis/kH33/NDv3jT7cAAAAASUVORK5CYII=" alt="">就不是一个单射函数。
注2. 从仿射加密函数的表达式易知,当a=1,b=3时,这种仿射密码就是著名的凯撒密码。
注3. 在求解仿射解密函数时,需要求a在
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABcAAAAVCAYAAACt4nWrAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAADjSURBVEhL7VLbDcMgDOxQzBVWIZugLBIpW0RiBxcbOzxq2pCqlSr1JD4I5F74Bh/En1zFd8i32YAx+nIrXxrEU+ckOHkIvB9FlzwsNrq24Hf+cAE6+ereqkOgkG/gsOt5431G/S4u3sxISfmM/23IA/gpHmo9Y5pCkIRkT0lFLHFg6oo8qdeOuigIUUirMJMP9kxGKCE6jQ+/pP+VWlLPdjk5dLsHe0xSW2XiyrWw696qRIm4TJg7Fsh7NA/6AmTicfaRrDQwTl5V0QBFpZYi2Wnyao6PlSerPJcUY7UM4lfJAe51kOhJviclAQAAAABJRU5ErkJggg==" alt="">上的乘法逆元
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAD0AAAAWCAYAAABzCZQcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFzSURBVFhH7ZeLrYMwDEU7FHOVVWAT1EUqsUUldvCLHedjh4fyAdqKXsmqaCDk2NdJe4ML6gfdouXRQzfOfPXZ2gWagLvuOtDzaGDvE8xXqzSqxt7kjijO0lugz4bUKoImK7vKKMBc6GzY5xDelcQALY10eqVx0VnagO4fC99UJwM9w6AmHZ48WqAcaJy7TgtMd16f2TTbkA20n0xEuX2OhKa5K9e1JmVvl9Eephd/taNkYtNYVWTzxIGqBeR47GDJ46HFJnUgdJFeE/S8prSPESqqPCXAXdvi+WdwLGoLtreDPL7S+SrtY1tZqjYma+OZG2XS3+AscQw0Khc8OC+zj8kVvG6s7DiFpCkeC53Eu6HTE0WGXt+Knc19rsdpI4ztHXZGE7j78gOtZ+GW3Pv+Vwk0t0F8cqgeFi4w2u3HSY00TLlscpICEWTUFp8E3SZlaSE75uzt/gl6e/Pn94mqJ52CEc7quEXkZvjFla7XBaEB/gB5zmgocLZrYgAAAABJRU5ErkJggg==" alt="">这可由扩展欧几里得算法求解,下表列出了在
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABcAAAAVCAYAAACt4nWrAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAADjSURBVEhL7VLbDcMgDOxQzBVWIZugLBIpW0RiBxcbOzxq2pCqlSr1JD4I5F74Bh/En1zFd8i32YAx+nIrXxrEU+ckOHkIvB9FlzwsNrq24Hf+cAE6+ereqkOgkG/gsOt5431G/S4u3sxISfmM/23IA/gpHmo9Y5pCkIRkT0lFLHFg6oo8qdeOuigIUUirMJMP9kxGKCE6jQ+/pP+VWlLPdjk5dLsHe0xSW2XiyrWw696qRIm4TJg7Fsh7NA/6AmTicfaRrDQwTl5V0QBFpZYi2Wnyao6PlSerPJcUY7UM4lfJAe51kOhJviclAQAAAABJRU5ErkJggg==" alt="">上所有与26互素元素的乘法逆元:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqsAAABeCAYAAAAE211yAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAvVSURBVHhe7dtRbttGF4ZhL8orEeBtNHswtIBkEc510EU4lwGyhVwYBbIHljMkJZHikTzUkDrf0fsAAzRNf6BvhxweMv6fGgAAAMAphlUAAAC4xbAKAAAAtxhWAQAA4BbDKgAAANxiWAUAAIBbDKsAAABwi2EVAAAAbjGsAgAAwK3ZYfXj44PFYrFYLBaLxdp0zTGH1cjo00afNvq00aeNPm2P2sewGhB92ujTRp82+rTRp83qczOs/v723Hz592//q3Vt3/e7+fr83Dx/+93/el301UZfTfc4XyxrnDue+pr/fjRfnr+2O1wPfRuirxh9G9qwz8Wwmh4Yz+3DMuSwmjez6ws5DNBXHX3bWOvc8dJ33NugD0v6FqFvI/QtYvXdeVj92/z4p41tH5Ihv6weNrNf0YYB+lZB39rWPXfu39f69bXd0y/Nj19pjwM+LOlbjL4N0LeY1cePAawpDQNpABiGgojDDn3V0bedsMPqIO9twIflgL5i9G2IvmJWH8PqFvKGBh4G6KuKvu0wrJajb0P0FaNvQxv2bTis9n/0lh6K7Zo+IBhW66GvMvqq2rZv+3Nn8/3LfyQ3NE4eHBs+TFZDH30F6KvMSV/FYfWjeXt5ap5e3tq/Kud5WP34vmuentq2vPbNe//3p/7+++W4qacP/ryhk7+3otv67D1U7Dtry2vXvP3p/4ETqvvX/Nwf2y7cf7J9mXW++Dt3ava9v/b7OqxX6/QxbPgwuey876wtL/t8neW4LxmdP6V7lzjoG5+hc2fne7MP2je6RpecMUp9aTk+XyoNq/3Fmpajh4alqO/PW7Nru3bf0/9m4U2ZN9TvMJAv2IX7ljnvO+j3MtT+PcD1aZ8vPs+den39ALRkCBhs+DCxfWKf+heu7jou4Lmvb9r/bP96dJ8WuHff5N/77FkxnKlpLblOPfeF3z+t86XCsHpyo6ZlHUZXeP6yetS3hhoGal2w/ofV7i2y8MtN4rive2s+vi0vanS9f9b54vfcqdOXdL9X/IA8teHDZN5n9mn+q+SnOO4b34sLG+/eNzY6b04H1bQUh9WJ6Xl6oDqsToz7tM6XOsNqvgH7m3bJgbOxRZu99GK9g+L9S/t2WDM3qjPs39H0cDUPW0fqnC9+z506fa3pMLDkRWsF1foGp1+wHKjVN31xXPyyXFlZ36m+cWhI12caUIfr9JYPHhVV6xtIX5+nZvYv/3pY9782E6uv4s+snt+sXi3f7Bu+AGyoqG90I/Z9Ti5ay5L9UxjiBkV9oyF82L9Iw+rAOl/8nTu1+ua+gnjorLt/7e84GeIG1fpGZ2v/+w46l/UNZ0u7pkNpiGH1Ql/W75+Dxlp9aucLw2qheF+uxmL29TeqwLWZFPf1D8W0di9p/+K9bNjni79zp27fkfaXuSv752TQSWr2dedp2rdde2/O9W9vSV937aU1c/0FGFYv9vWU778IfQyrhbxs6CW39IUcVkdfH/27ff8iXp9Xhh1H507dviPlh6XZ5+yPWJNV98/BdVradzpwzz4XxIfVq32Znw8e6/T5P18YVq+Z+6McR18B5izv0/gCWXx9OnwgXlLUN/NjAN6H8rrni79zp1bf+MXRz9lTc//GjT5U65t5dng4g5acLxfPT+Vh9ULf6NocnbP3tUqfwPnCsPoJ3RtHv6L3Of8qlxRfn5GH1dZo/5y/SCV1zxd/5069vpOfM3PUWHP/Qg+rk/3z8hJZ0tftz7GhW5P9Eh5WL/dN7r/ofc7Pl4rDqg76tNGnjT5t9GmjT9uj9jGsBkSfNvq00aeNPm30abP6GFYDok8bfdro00afNvq0WX0MqwHRp40+bfRpo08bfdqsPobVgOjTRp82+rTRp40+bVYfw2pA9GmjTxt92ujTRp82q49hNSD6tNGnjT5t9GmjT5vVx7AaEH3a6NNGnzb6tNGnzepjWA2IPm30aaNPG33a6NNm9TGsBkSfNvq00aeNPm30abP6GFYDok8bfdro00afNvq0WX0MqwHRp40+bfRpo08bfdqsPobVgOjTRp82+rTRp40+bVYfw2pA9GmjTxt92ujTRp82q49hNSD6tNGnjT5t9GmjT5vVx7AaEH3a6NNGnzb6tNGnzepjWA2IPm30aaNPG33a6NNm9TGsBkSfNvq00aeNPm30abP6GFYDok8bfdro00afNvq0WX0MqwHRp40+bfRpo08bfdqsPobVgOjTRp82+rTRp40+bVYfw2pA9GmjTxt92ujTRp82q49hNSD6tNGnjT5t9GmjT5vVx7AaEH3a6NNGnzb6tNGnzepjWA2IPm30aaNPG33a6NNm9TGsBkSfNvq00aeNPm30abP6GFYDok8bfdro00afNvq0WX0MqwHRp40+bfRpo08bfdqsPobVgOjTRp82+rTRp40+bVYfw2pA9GmjTxt92ujTRp82q49hNSD6tNGnjT5t9GmjT5vVZw6rLBaLxWKxWCzWlmsOX1YDok8bfdro00afNvq0WX0MqwHRp40+bfRpo08bfdqsPobVgOjTRp82+rTRp40+bVYfw2pA9GmjTxt92ujTRp82q49hNSD6tNGnjT5t9GmjT5vVx7AaEH3a6NNGnzb6tNGnzepjWA2IPm30aaNPG33a6NNm9TGsBkSfNvq00aeNPm30abP6qg6rH993zdPre/8rv4r7fu6bp6enbr28Nd4vldK+99e+La99M7eD6Z/ZffdRXvP6HLf7aCzty11DQ8T7rze3fx7bS/pG//6HtWve/vT/gEM1z5fT34t4viSezs7kpvMlLednTK39mz4bujX/fNzSWvdfWp6ff9WG1cMF7fxCTor6/rw1u7Zr/7P7Zd7cSDdrGsSnN+ikb7iglR8m89fnR/P2ctxbL4qvz8MLVNfj6cE4p9r+5ZfIYbDz076kb/BQ58vo996b/ck5e0/1zhd/Z2dS2pcavJ8pp2ru35Ho+XLx+a71/KsyrOb/AO0D8z1tuLnZfhRv9unX1Dy83v/t6pIlN+tBHgCGvu5iTnvq6cCqd32mB6S/r1i37F8+dJ3fg7X276x1eq/eyeL9Ezhbknrny5iXM6bO9enz7EzK+nwONJfUOl9GnJwtSb37T+v5x48BXDO9SPMDJdYf053KezhzU3o6cKtdn/1X8/xGnZb8YeTn7f+SWvs3O6w6GPaW9nkbaixrnC/dg1P3y2pydj32tIfVbl8OZ2Tglylr/9rfcTWwV7v/xJ5/DKvX9Bs6XKi5MeqwemEQDzmsjoab45eQe1vUl1se7GGSm4/Xa/5Cojqs5nvP/94ltc+X7kz1/7C8xnr+SQ+rkz3L95iTfbLU3r+zD1Z3Vu3+E3v+Max+wuEwbdfude/+obJo//KFbL89hhxWp0Y37/0s7cucNFxSc/+6AbVb+/be9PBQWdKncnYma5wvSf5vILp/ibWH0sPqlPHC4Qn7N+MT95/35x/Dailnb1lzivvyRXr5AHqYYVX4YZk94MNk4OX8Ke/T+rnANc6XzPnD8prQw84gny+P8zLc7p67n+tc9f5z/PxjWL1mdHMG/JnATw43EYfV8a/97G1R3+SAyU3RXqZ6Z+fLqF35Zx59/h8dLLXOl+l+pjPGw/Oj2vXZkx5WJ+eLlz26pOr+ORzO17n//D//GFY/IXf1f9QYrW/UdljnN2fEYTXJh+/Q7WRvb7o+nX/1SNbaP9nr0+ED8ZKa58vo/nPyklXz+kw8nZ3JTeeL8xfhpOr+OfnaeGq1+8/586/qsKqCPm30aaNPG33a6NP2qH0MqwHRp40+bfRpo08bfdqsPobVgOjTRp82+rTRp40+bVYfw2pA9GmjTxt92ujTRp82q49hNSD6tNGnjT5t9GmjT5vVx7AaEH3a6NNGnzb6tNGnzepjWA2IPm30aaNPG33a6NNm9TGsBkSfNvq00aeNPm30abP6GFYDok8bfdro00afNvq0WX3msMpisVgsFovFYm255swOqwAAAIAHDKsAAABwi2EVAAAAbjGsAgAAwC2GVQAAALjFsAoAAAC3GFYBAADgFsMqAAAAnGqa/wF0tGIEElb74gAAAABJRU5ErkJggg==" alt="">
举个栗子~
假设e(x)为密文,x为明文。
设仿射加密函数是
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKgAAAAdCAYAAAA+TCdyAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQ3SURBVHhe7ZbdbSpBDIV54jGvFJAKUkJKSA2pgSpSBGWkitSRMog+tEdyjOePWXKXK3/SSszimfGxzwzszkmyYdKgyaZJgyabJg2abJo0aLJp0qDJplnFoF9fX8unNiOxScz/VsOanmmDvr+/n7+/v5dRm+PxmCadYLTea3I6nc6fn5/LaD1qnpgyKMm+vb0to36en5+XT/eD3F5eXpZRTE/MX/Px8VE0wa31noUDwb673e5iJgs5HQ6Hy3dPT0+X/FtEGkuemDIoi5aKWYN5nMZ7wEmkmOxB0SJ6Yv4absZWXW6t91pQK7s/xpUpyVtGLeVY01h6f3N3SG6/3y+jMTiFr6+vy+g+ILZlvp6Yv4BbvFWPmXqvAabztaKP3rDERLd8S2PJEzd3hwVx/S0g6t7F/pcG5Ubp/SkmjpunxUy91wBN3JYWDOkhxhutR2PJE8XuyNFMiq5evoscz0mxQhDGGvZPsE5aJBCIbT0t1jBoj5aIXoOyDvuXfhItpXrrZxOopzcDfUSD34N5rMd3fI5AB2sTQ57R/h7qw56iV2PJE2F3EElyQIJRYrz3TSAxmq4k+WzXstSSxhisX3tazBp0RIun16DUlfWJx1R8LpkAzX5NjKVaYQTGxOhQMSZ3X2vmaKwaeGN4DezBWjVYEw2WEY2RJ666Q4AMQNLR6QM2K508EmCN0vdAMhTnXtTMJ3pierR4eg2qhqm+zCMfDOQp1Zv8ePQdJmK+xqxtNbKHXV83l+2x+m7xMRHUyfd0RCPv/fyr7rAJxUUoIv3JErWm+aJE1ASzNsJqT4u1DNqjhduLJtiHOXbsCw+8R6sFs0X7leqNkayZaDzrqm/MsXtQO3sTyqC2z9bwoFu4BvHRoRzRyDvviasoglpXOejkRqjxJQMC39f+y1Gw2tNiLYP2aPGM3KC+ebphPKV6E8scgVmtuextCl4Lc/1tiakUQ63J08dYiPU6xIhG3nlP/IrSH9qacYQ/mQJBNIfClJqEoCjBNVnDoD1aInoNiuF847kcMIgnqjd1tLHkix57gK3Z1F+NAW3RjSoP6GAQF0E8JrR7Wno1ljzx642SU8JMsqfPggC7CWMajhDWURI0y6/BdyXBoBNbe1rolJYKB6WYES0RvQaNDIP2aK6vN3jTsq+tjdYnf/QAY2nge296OwdzKYZaRNrZj3zZm4d5xDMPtF5LY8kTV5ZlIguyCRvWIDklQvJ2DIwR6SGR1tozkAtFQAd7Id5TixnREoG2HoMCjaPWuqVq83xOzLF1JG8ewdrMkTmBeIxe24s55KSDy+coljWonx7WJSdrRujRyPvIE/XfwAYsaAvSC8ZIxrm13o9AyRNTBoXeW0VQZHuikzFG6/0I1DwxbVB+BvyVXiPNOcdovR+BmiemDZok9yQNmmyaNGiyadKgyaZJgyabJg2abJjz+Qds8QUPt4pMeQAAAABJRU5ErkJggg==" alt="">
由上表知:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAG8AAAAZCAYAAAA/vnC8AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJnSURBVGhD7ZXtjYMwDIZvKOYqq9BNUBepxBaVukMujuPgLyhHae9yzSvxI5g49vsk4Ss0VasGr2I1eBWrwatYDV7FejO8KQxdH8ZbHjY9pTfCA3Bd6Bq8w/QeeLcx9BHccG0n70i1a7NiNXgVawHePYwnuObyUOgBgHxFdu7/7bfgwbq2n+nchf5yp1H6BuuOz3nK70kqfhqjS6j7pWd5dug6iHwkqM9bj+TAQ3AwwcKjBvYC+EPwwLACCOMzAPRAjznQZGwZQ3xnX1CHAwfBDbGyLAewgAc7KCU6D6ZZ2gV9jPWHw8vvr+zUpkLR1DQ283iMG40qvcBj+lFmJwOZUSBulhfXcsxdF9Xfh+EcaxVzMSYPD24g/k7BG3OBdvIUYyl5uhZfAS82UhqYG6Nv5U7HuL7yaIzgZrNp45V+NhidcuRv5NpL4r1R/c7Dehh5vQae9knfBov/PFxcks96Ct6S7HrGMGa4bTaqnA7bpM6f5q/CkN9DLZCPNoGEQPLW3Savn7QWf5f6qwieMILBM2BBqS6A59UurxyTWwjn8/wEbc6J+XQNbl0b5G5GWgNqyfXouj8Q3toJseBAphZQOemz5hOd83iPA9eHpyU3IKhKeG6zxUwPjszvwkh9+VBnKEwOPHdTbdAmeI7vVcKj7+e4Gitjk6ksv4Wh82np+vKVJnKsneh1efDkRvDWqxYeCOfQdaRNS4aU2Cjzq1z8W/nwkyXXsycM4vt88U9eBkbrmfgivP8uNMbdnHsFG8IAfa0+FF7UoWbDZjj6Nnqsz4UXZa7mnYJr74g8P9VHw6tdDV61CuEbxR3lg0Io1i8AAAAASUVORK5CYII=" alt="">所以相应的仿射解密函数是
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAALUAAAAaCAYAAADxGR2SAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAShSURBVHhe7ZfdUeQwEIT3aR95JQAiIARCIAZi2CgIgjCIgjgIY6mPcl/Nzc2M5B9ufT59Va5ar2VperqlhdN1MDgYI9SDwzFCPTgcI9SDwzFCPTgcI9QJHx8f06c+5o7/2+y9vrlUeg4d6qVGvry8XD8/P6e7Pi6Xy02C07PmEj1b8fb2dn1/f5/utqPq9+5CTQMeHx+nuz9ByNPT0/fFuNfX1+nJ7yw1kvWfn5+nu3k8PDxMn34O9NqQtDbTGj1roPesezqdvmu0UNP9/f33s7u7u9RDi9cNWb93E2qMoQkUitgIGnU+n3+FVfecBpa1wfTN64V3fS1bwSbN5s/MhTV6tgAv7fp4piCjReHOamzpjr7f3UlNkVmodTpbCC+NsSw1UptkKZxI1Lg1aK7mzcxdq2cteOC9pEc+5IyJDqGW7qzf/1SoCa8XgTA7fo2RzEVAloJZW4co2rSezNy1etbCacypbMEfD2N8/T26s343Q81usYVRKBNlf8fxfeuqqEKNQV6oQq1mtYxUANDgTze+j8IBPX3QqRMZtwTmZr7Wr05mbqVHP+tAvT5E9Am9fm3eY06e8dlDX5iX59SerW+hdtYTvbqzfpehZiGM16J8RjyFZ2A+oqqrogo1NfBMzUQMRtjxlZG2durw4/iOMZ45fegxoxfqY03WQSefI22ZuZke+iefCBD3jNOm5V69tlp4R/fyya5JnXY95meeCuZDl6VXN0T9bp7UwIQUGO3MralCDTSN5xJKXfYEzYxEOM8AI6JTiAZWGnv6QG1o2AIZqjoxmfkJlycyt9KDFi49J3zMq3vmsj6wtl1XG0lrqqeWqCYP/fT9mqvbv98Vai+wgiIpqroqWqH2IN4ax/yRkQo75vHcn2rQCmxPH3jujeQ09D3wV2Q+2qjJQhCjGvjOm1vpIYA2hASG9dQX3rNrU6M9dRVqjbcbBHTSVzA+OoDm6va960qPghY1PgKh1VUxJ9Q0xRoBmZHM2fop1OmV0dMHntu/s9dAkLy5OrU8UV2VHsYzlyDgtm/21AY/P+/aTYEPeo4f1O5PbgtjvTYxV7fvdzM9FMhuQmS0q7amN9SMs40UkZH6x6MVNkzMGt3TB2rpqb0XdPhgsDHR7Yn0ZXqo086BNt63h4Ptrfpne00fdEjofa0vDxgTwXiCa9ez9OrO+p06QIEEh8JYXJOyY6KTUGiHVleFdmQmmO8JFetEIY2M5B3mlAk0I9LAfL5xc/rAs8zIJbC2DxO6/abKzI30gO+RP3W1LnrQDtxLL8/t+3Y8gdRzehH1mbXQwLpcvMd43gPN19Kd9TsNNcWwuBYC7in6p2BNikcQxVK0B2FqdAT1RkbyHvPSPBqZ4TXP6QM1V3MvAWOpWSefNxYyc8HXDsxl60SjDR9r8p7tM+Ppa1YD46lThxGfo3G8jw+6mJN6bIChRzffR/3e7rdyR0RG9kKTrMFzYEPegsxcWKNn72T9PmSo1xoZncItWLP6BflJWptpiZ69U/X7kKGGNUbyE+p/DlvcKtA9m2mJnr1TaT5sqI9oZMStNtOeOWyoB/8vI9SDwzFCPTgY1+sXquT5ohGE9hAAAAAASUVORK5CYII=" alt="">
若加密明文是 sorcery ,首先把明文每个字母转换为数字 ,,,,,, 。然后对明文进行加密,这里以第一个字母s为例:
e(x)=(*+)mod
e(x)= mod
e(x)=
对照下表:
依次解密,最后得密文为 welcylk
那么,我们根据这个原理,写一个脚本解密一下~
(这里又要借用大佬的py脚本了~)
flag = "szzyfimhyzd"
flaglist = []
for i in flag:
flaglist.append(ord(i)-)
flags = ""
for i in flaglist:
for j in range(,):
c = ( * j - ) %
if(c == i):
flags += chr(j+)
print(flags)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAcYAAABPCAYAAABxqmWNAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABCrSURBVHhe7Zzrrx1VGcaPf4RfjNd4i9YYP0AMQeVabhbaQA4h8RMhcrNAkZZTQO1BwqWACAYMci+oMfWDEiJJuahU5Coi0Cv0Sm+n9xYqEJAuZ83ea593r/PMzDOz99ln9j7Pk/zo3uudWTOzOuf9dXZ3GTp48KDbt2+f27lzp9u6datbv369mzdvnlMURVGU6ZhUjHv37nVjY2Nuy5Ytbt26dRKjoiiKMm0zdODAAbdnzx63Y8cOt3nzZvfmm29KjIqiKMq0zdD+/fvd7t273fbt292mTZvc2rVrJUZFURRl2mbI//3irl273LZt29zGjRvdmjVrSonx8Rd2uPn3bmyyyc2/b3PC227B/Vvcgge2uisf2Jaw3Y08uMONPDTmRpbsdNf9cX9zb0VRFEWpV1pi9F+82bBhg1u9enUpMV5050Z31h2H3eLHDrubHv3Izbn1v2724oPu9Bv3uFnX73Tf//lWd+roJnfKz9a5k65Z42ZetSJ935WsGHUzhma40RXN92WydNgNzRh1VXadPlnqhiutr99vOPlv/FpRFKX+GfJfvPHfSPVfvPHfSF21ahUtxnff+8iddu3b7qzbP3YrthxOx+54/L1EinsbUrxuWyLBzYkU17uTf7I2keJKd+LIa27uPTvTbeMsHR5yQ8PtLXTF6IwJAmuN9aUYV7jRGcl1Do0TXfIUxMsLnY/EqCjK9MsEMa5cuZIW4/LXdrvZN7/jzrztQ3f5w++7Qx8cdu8c+sDN/c1YQ4rXGile3ZDiCQtecfc9/X5zhigTZBUk0t6cvUBnVLKhyZSK0VxPJ3LvShpSHJehPz8rNYlRUZTplSH/jdTwTzXKivHOP29yZ/7yQzfn1vdSQV72wEF36P3DCR+7uXfvcKcs2jAuxYWvp1L0v77w1v+aM0SZIIlGUx1ORNjeuLsgkrqIMUlXRF81fs0z10FiVBRl+qUjMV581yY35xcNKZ5x0z4364ZdbuHDe9Kal+PxC/7lTrp6VVOK/3bHX/FS+gSZPFRmpPGE2JKgl1fyJv3oNAym8mw2Wvs6bcBJEx9N9ml+JNguG18f/7gwpU0IcX28mbeLq7Fd2zk250nPE+zfniIxdn4e8Rzj+4T1bdbT7aN52uJr7Wva/lF31nH8uP19yVoLRVGU+qWyGBt/v7jZzb7l3USK+93pN+x2l9y7x60f+zCtv7RyqzvqgscaUryyIcVjL3/OXXLP7rSeFStBL4L0pX2qacoyzQQxmsad1oKAGjXb0/3csUjGG3sSf5zm3G1iTsZnJGIL27Zk1XYueYnECM6zo/NI57DitX/YaLyeIO30GGC8eT7Za5p1HF8Lc9nXiqIo9U9lMT77xr5Uhmcs3p/+es8T7zQrzt304DPu2z/8UyLEV1OOn/+yO+7y590xly139//to+ZWGfHNNxWWFcj467anpjYZoUbdfO8bf0uCzdgxVE/3N2JuHmfpsJ8zOdaEc/TH93Kx54DSmLf1BGa378Z5tCTXTmPNzFwgrSfe1gYFaxodwzMuZ4lRUZT+TGUx/vqxbYkUD7hzbtvrnl/b+Gx09cZdbnhkqZt7+8vu4ad2uSVPjrklT2x3Dy3b6s67OXlqTAT54rp005w0G2lLkM3R9OnRNGafSRdjmC+8To5hRbS0/Rwb8TUvCXsuNnbeKN04DzhHSOPcssTYiF/HsE3JNW3F7ycxKorSn6ksxovvejv9t4q/X34off/IX151x1601M286o1UinEWL3nWnfzTt3L+fnE8qQSHh8efDH18I07GGkJohhVjWrNCaAhivLE36hOOZ47ln6b8R5fhaSq8t0+vo9H8WED2vOJ04TwmXKufIqwROC+/hm0Ddh3ta5+8NbXH8TWJUVGU/kxlMZ66aKObdf2YO/dXO9wPFi1zR899svUP+E8c+Y+76Jbl7vwbn3Dn37DMnXPNo+7Ic/9Q+PeLrXgZRE03NOLxj/mS0GJM0pyzQTLuv1DS9sTTnL9F1MzTY5lzSt/b4/lDmP3bT94kT4w+nZ9H2CbMMX4qQIxJWh+hTti+YE0zj+P3kxgVRenPVBbjtb/b5q58cLsbecj/r952pv+rt5Elu9zCJXvSb6YufGSvu+q3+9v466rmzoqiKIpS01QWo6IoiqIMYiRGRVEURTGRGBVFURTFRGJUFEVRFBOJUVEURVFMJEZFURRFMZEYFUVRFMVEYlQURVEUk8pifOGVFW7ZP9pRFEVRlH5PKTF6GVpiMQbqnqefe6MSTz77WmXQfCxP/fP1yqD5JhNFUZR+T6YYP/Gls9uIpZgnRkQ8X7d55sVVFKiZsyDhsaD5WJDwWNB8vSBcN/q9EkKIOkOJEUnRgwTI8vcXV1YGCY8FNXEWK7qyoPlYkPBY0Hy9AK1BHvZ+E0KIqaRQjEiIASQ8FiQ8FiQ8FtTEWVBDZ0HzsSDhsaD5egFag7qDroMF3acs6FymEtsghJiOZIpx394DUIYWJDwW1CBYkPBYUFNjQU2EBc3HgoTHgubrBWgN6g66DhZ0n7Kgc6kLqGkEfI9A40L0O7lPjBdefWcunzzivMp86qjzK/Ppoy+ozDdPu6IyXz7hksp88bi5lTli9khlvjrzssqg6+gFXznx0sp85jsXVuYLx/yoMl+bOa8y35o1vzKf/e5FlfnGKT+miJuGRXIUg0imGJEIY5DwWJDwWJDwWJDwWFATZ0HCY0HCY0HCY0HX0QuQ8FiQ8FiQ8FiQ8FiQ8FiQ8FiQBLNAzSMgOYpBQ2IsAWriLEh4LEh4LEh4LOg6egESHgsSHgsSHgsSHgsSHgsSHgsSYB6ogQQkRzFISIwlQE2cBQmPBQmPBQmPBV1HL0DCY0HCY0HCY0HCY0HCY0HCY0HyKwI1kYDkKAYFibEEqImzIOGxIOGxIOGxoOvoBUh4LEh4LEh4LEh4LEh4LEh4LEh8RaAmYpEcxSAgMZYANXEWJDwWJDwWJDwWdB29AAmPBQmPBQmPBQmPBQmPBQmPBYmviDzxSYpiUJAYS4CaOAsSHgsSHgsSHgu6jl6AhMeChMeChMeChMeChMeChMeCxMeAGomkKAaJTDH6IpKhBQmPBQmPBQmPBQmPBTVxFiQ8FiQ8FiQ8FnQdvQAJjwUJjwUJjwUJjwUJjwUJjwVJjyFuIpKiGDQkxhKgJs6ChMeChMeChMeCrqMXIOGxIOGxIOGxIOGxIOGxIOGxIOkx2AYiKYpBJFOM/ob3ICEGkPBYkPBYkPBYkPBYUBNnQcJjQcJjQcJjQdfRC5DwWJDwWJDwWJDwWJDwWJDwWJD0GELzkBTFoJL7xOhBQgwg4bEg4bEg4bEg4bGgJs6ChMeChMeChMeCrqMXIOGxIOGxIOGxIOGxIOGxIOGxIOkVYZuHEINKoRg9SIoeJDwWJDwWJDwWJDwW1MRZkPBYkPBYkPBY0HX0AiQ8FiQ8FiQ8FiQ8FiQ8FiQ8FiS+ImxfEGJQocQYkBhxI2dAwmNBwmNBwmNB19ELkPBYkPBYkPBYkPBYkPBYkPBYkPiKQH1BiEGjlBg9EmM1kPBYkPBYkPBY0HX0AiQ8FiQ8FiQ8FiQ8FiQ8FiQ8FiS+PFA/EGIQ0RNjCVATZ0HCY0HCY0HCY0HX0QuQ8FiQ8FiQ8FiQ8FiQ8FiQ8FiQ/LJA/UCIQSVTjOFbqZZLF93dBpIWy+eSH8yqfP57F1cGNRcW1MRZkPBYjpyzsDJfP2leZZAsWdAasCDhsSDhsSDhsaA/SLGge40FCY8FCTCPuHn4nhCPid4SejOqierkPjHaBY+lKDGWAwmPBQmPBQmPBQmPBa0BCxIeCxIeCxIeCxIeC7rXWJDwWJD88gi9wFLXpuzcUAqq1ZEiwWXVi/YT1ZAYS4CaOAsSHgsSHgsSHgsSHgtaAxYkPBYkPBYkPBYkPBZ0r7Eg4bEg+eURekHMVDfmLAH2ixjt+qG1LKqL7iMxlgA1cRYkPBYkPBYkPBYkPBa0BixIeCxIeCxIeCxIeCzoXmNBwmNB8ssj9ALEVDbsQRIjQjLsPRJjCVATZ0HCY0HCY0HCY0HCY0FrwIKEx4KEx4KEx4KEx4LuNRYkPBYkvyyY5lymgXtpBXHZ13Hdjsdj9r0dt9uj/eJtUN2+R3UWvyaBvBrapkzdjtsau11WPQu7Pdo3jNlxNFZXCsUYkBglxjKgNWBBwmNBwmNBwmNBwmNB9xoLEh4LEmAWoR/Y5oEo0/Ri2cTiQSJix8J43pxFcxXtX0S8FllrU7RmVet+PK7Z92i/rLkQ8fzxvp3OP5XoibEEqImzIOGxIOGxIOGxIOGxoDVgQcJjQcJjQcJjQcJjQfcaCxIeCxJgFqEP5DW2sk2vSEzx+ywplRkvmq9MvQx+bbLWp2jdqtbRuB0rqhfB7F90vLpCi9EjMeJGzoCEx4KEx4KEx4KEx4LWgAUJjwUJjwUJjwUJjwXdayxIeCxIgAjbA7KaW5Wmx4inSFRlx4vmK1Nn8OsS1qbq2lWto3E75l8j7PZ5oG3jMfu+zNxTjcRYAtTEWZDwWJDwWJDwWJDwWNAasCDhsSDhsSDhsSDhsaB7jQUJjwVJMMb+/HuYZsjCiseP5Qkpq1Y0f6f1IuJ1yVqnovWrWkfjdqxo3iKK5rdjnR6r15QSo0dirAYSHgsSHgsSHgsSHgtaAxYkPBYkPBYkPBYkPBZ0r7Eg4bEgEcbYHpDV9OIxFi+ZIhGF8TwhZc2B9ulmvYh47bLWqmgNq9bRuB1j6mibQFzP2rZonjqSKcZwMeiCJMbyIOGxIOGxIOGxIOGxoDVgQcJjQcJjQcJjQcJjQfcaCxIeCxJhwP+ch5/9rD6AxsoQJON/zRMOI6N4jvC+zFjWeN5YEXbt4nUM7y2h1mm9ypgdtzU7Zgk1drt+IveJMQ+JsRxIeCxIeCxIeCxIeCxoDViQ8FiQ8FiQ8FiQ8FjQvcaChMeChOgJP+OT3dBYwZQRkegd7P0xrcToQcJjQcJjQcJjQc2FBTVxFiQ8FiQ8FiQ8FiQ8FrQGLEh4LEh4LEh4LEh4LOheY0HCY8kSosc3s4Ad7xbM01dRXUwdzP0xmffPZNORGC1Ifnkg4bEg4bGg5sKCmjgLEp4FrakQQoje0zUxCiGEEIOAxCiEEEIYplyMdf8cup8/JxdCCFGeromxSCBZ9aL9Jgv2uN3eTgghRL3pihitEJAciupTRbfOpcz1CyGEqDddFyOirmLo1nn16/ULIYSYSKEYfVMP2B3jGtqmTN2O2xq7HVu324TXqJY3jupou6K6EEKI+pErxriRZzX2ooZfte7H45p9j/YrW4+3KdoH0WldCCFEfaA/SvXNPavBT5Y40Lgdq1K3FO2fN2bptC6EEKI+0B+lhtdh3NKpGMrMa8f8a0S8fV7Nvi8zZum0LoQQoj7U/qPUvLGieRFF+7Njlk7rQggh6gMtRv86q8F3KoYy89qxya7njVnK1Iu2FUIIMbWU/ig1bvIxodZpvcqYHUc1W2fG7Hs7jrZHdUtRXQghRD2gv3wjhBBCTAckRiGEEMIgMQohhBAGiVEIIYQw9LUY+/3LLPoyTn+j3z8hBpNMMYZvUcbEEzDb5NGN/bPG4/nQ2FTDnMtknm+n69Hp/v1O1rWHdbGg7fqZQbwmITy5T4zoxrdjRfUiOt3fk7d9N+afbJjzYc/Zb1f2+qrsY+l0/34n79rjWjfXqS7rXodzEKK7nO3+D6pdctuSBijjAAAAAElFTkSuQmCC" alt="">
得到结果~~
提交 flag{affineshift}
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdoAAAG/CAYAAAD/3RZGAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAC7CSURBVHhe7d35m11Vne/x+1fc5z53+OF6b9MXbts2Dq1ti9KKs62CIlxwoEERbBCEhhZBBhkEwiCTgGhLmAlJCIQQpgwQAiEhIUwBBZJISMhAwpiEhCTr1mflfItvrax9zq6qs6pOnfN+Pc/nqTp7WHs4dfYn+9SQ/xQAAEAxFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAVRtAAAFNT2ot2yZWtY89qGsPyV1WHZilfJKEbPgZ4LPScAgNHR1qLVBV0X+Lfe3hi279jRmIrRoudAz4WeE8oWAEZHW4tWd0+6sKOz6DnRcwMAGHltLVq9VcmdbOfRc6LnBgAw8tpatHqLEp2J5wYARgdF2yN4bgBgdFC0PYLnBgBGB0XbI3huAPSad955J9x3333hrbfeakwZaN26dWHGjBlh69ayv5VB0fYInhsAvUTleeedd4bTTz893HzzzbF0PZXsNddcE+fPnDkzbN++vTGn/SjaHsFzA6DX+DL1Zbt+/fpw/fXXV5Zwu1G0PYLnBkAv8mU7efLksHLlynDjjTf2l2zV28rtRNH2CJ4bAL1qzZo1/WVrUdm+8cYbjSXKomh7BM8NgF62fPnycMkll8SSvfzyy8Pq1SP3R3wo2h7BcwOgV+l7sBMmTBhwRztt2rTiP21sKNoewXMDoBdt3Lgxfm9W5aq3j+fPnx8uvvjiES1birZH8NwA6DWbNm3q/xUfleyqVavidL2NbGXb879He/lVvw9f2ffAAdE0s/CJxeHAH/woLF22vDFl8LSuxtBYucfdol3PzUm3LA4fPfmebPY+84Hw9Ir3f7hgxjOrB8w/7HfzwjvvvteYu6trZr64yxiptW9uDl8bN3vAuNpOXdq+9kPHAaB7qTx1x6oyvfLKK8OKFSsac3ZaunRpf9nOnj07vPde9bVpuDqyaK3sDj/quPD66+9fdPW5pp125rlh8+Z3KdpBKH1Hq+LyRarSTEswXcazUm5WtJqu+RrbaL1W5exRtEBv0B+gmDt3brj00kvjHWzOkiVLwmWXXRaefvrpxpQyOq5o0zJthqKtr2TRWgFaqVqZ+UIUuxtN70Bt+s2PLA8HXPpwZWlqPC2n5YeKogV6x7Zt28Kbb77ZeJT39ttvNz4rp+OK9o67ptcuTyva+2fMjh/t7eW0JDWmf/vZz69TtCp8Fb+t7++0bZ624beT/kPB/gFh8y1+LP9Wed1zUFfJok3vVK04q4rWT/fFp/mtirbO3avG8m8tV23PPvf7btJS92Om+2DHZfNz4wHoXR1XtCqbOnezojJUKfnl06LWYz9f6/j5rYrWijT93rAVpM3XfmhbYqVq69hjm58bMz1u7YfWsf0crlJFm97NGhVTevdpZeWX1TQrplZFa9tqVmbpdm0dTRcrV3us+V89f/aAbVpxWkH7fRS/TjqeaD1f7gB6W0cVrRWQL5xm0tIUKzUrylRaeq2K1peqsf3UGLnSFF/wudL04+bmi8ZMxx2qUkWblpCxArK7PIsvwfSusVXRipWgH9OKW+vlSl+PbTtpMeaK0i/vS9XT8ortD8UKoMqYv6OtU7Q2zd6W9XefWrdZ0Wo5v55P3aJNy138cWpbufGVTi7aqmLL0TKtSrFO0XpWchpH6/iC9Py2WhVrOl/zfKn72DIqWZtG4QJIdcX3aJsVrRWllVxaenWKtlnx1ylasXGtQLUP2hfRtvzjEkoUrYpGpaRyasaKzpebPvellSZXmDm+RNM7ZNOqaK2wtb6W9XewvoRbse1o/7UeAEjHFa0VYZ07uVZFm5aqpNNaFW1uG16dorVlbMxUus0S2l20dqfXqlCs2OqUleYP5o5WfIn6zz091nTNzxWtqGQ1/afjHx/wj4eqMatUjQ+gd3Vc0YoKJ73rEyskK7BcCfqizZWgPvd3uGnJpY9tDNumTTvvokvjsrltSK5o7W7W4o9P66fHq2m2H8PVzqK1MvGFVEWFYyXXSrOitW36ws7th7bnl7GitOKzddIitOVy/3hIxxRN03IaT+Vs+2zj1C1mAN2vI4tWqsrJF48+b1a0YsXp11eB1S1aYwVtueW2yWHJc3+qVbQa8/iTTh1Qoraffj2t47fRqUVr35NsVSYqIy1X9/uWrYp26Zq3Y0lqTEtamGLbtfjtVxWtTa+687ZjtljRLl37TtPtAUDHFm03UWGmRSxV00vguQGA0UHRjgDdlaZ33pqmu9Z23bG2wnMDAKODoh0hVqyWtHhL47kBgNFB0fYInhsAGB0UbY/guQGA0UHR9gieGwAYHRRtj+C5AYDRQdH2CJ4bABgdFG2P4LkBgNFB0fYInhsAGB0UbY/guQGA0UHR9gieGwAYHRRtj+C5AYDRQdH2CJ4bABgdbS3a9a+/2fgMnUbPjcqWEEJ6IZ2krUULAAAGomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFihs3brXwtm/Pi98/JOfDrvt8bfhB4f+MDz51NNhx44dMc8882w4+pjjwp4f/UT4wG57xHz+S18Nx594Uph8+5Tw5ptvNUYCMBZRtEBBL7zwYvjiV7/eX6CW3T+4Z7hlwm3hksuuiOWbzrdcfMllYdu2bY3RAIxFFC1QyKZNm8MJP/9FLMzDjzwqrFr1apyuu9gXX1oa9tv/wDhPd7K33jYxbN68Oc4H0F0oWqCQJxY/GT6458fC577wlfCXv7zcmLrTyytWhC98+Wvxbva2iZNj+QLoThQtUMgfx18X71hPP/PsXd7+XfD4wliy3zrgoLB+/frGVADdiKIFCjlv3IWxaCdMnNSY8r55j82P8449/oT4FjOA7kXRAs727dvD/AWPh38/6ZTwmc9+IZah7jy/vu/+4fIrrgyr16xpLNmcylMlqvXnPvJoY+r72lG0NoYK3Wj/9RPNfv/1PeBjjvu38PLLKxpL1bNx06b4U8/6KWn98JaNdcihPwr3PzCD7ykDNVG0QB99j1QFdcBB34uFUhUVzdS7prX8nqovWhViqkTRvrJyZfjxT47u39c0+vWi3L6kdGwPznk4/NPnv5Qdx6L5j81fwPeXgRYoWqCP7jp116aivfuee+P3Ta1A9FF3svpVG93dqmxzd6myYcOG/p8mbkf22nuf8MKLLzVGH8gXrf0akcr0hptuDq+/8UZcRvv+0tKlYf8DD47LHnnUMWHjxo1xXo6W1w9n6Tg11tXX/D4eu50L3TEvX/6XcO75F8bzVfcfHkAvo2iBPvphJf36jYqkii8hvZ1qZeaNRtEefezx4eDv/0vcJ/sVopT+KMY/fGrv+FPQ+mnoKvoHhMpTxayfjG5G4+gnqjWuxgeQR9ECg6ByVam1KqzhvnVshV2naJX/990fhDVr1zbm7Mrvz+QpdzSmDmTHpm3+6c9/bkxtzop5OG+BA92OogUGQXe++nUdFZbeYq4ykkWrO+yZs2Y3pla78DeXxuX1MUfHo/n6c5F1/xrVli1b4g9etfqHB9DLKFrAWbtuXXx7+NAfHRH/3rC+D/m1b34r/t3he++7P7z11ltNf23HjGTR6i409zZ2Svur5f1PKRv/D4g6pe3pDlnr3XzrbY0pADyKFuijovnDH8f3/xpLVTT/Qx/5ePy8U4q2aoxUs6L1+zvU5MYFQNECsWQvvfy3sSxUpPqJ2qXLloWtW7fG+fohKP0POgsXPRHOPPvc+D1JLdtNRfvOO++EI/71p3H+UEPRAnkULXrec8//Kf7krEpt0ROLG1OrqVBULN16R9vse88ABo+iRc/T9xZVMJf/9qpavw/ajUWr4x534cVxvj7ye7FA+1C06Hl1itOogH593riWy4+1opUHH5oTf4L5G/vtX/tPTQJojaJFz7P/ZafOHa3+IIR+ClnLd1vR6ieX9UcvtEyd/3Be50pjnn/BRfF72gDyKFr0PP//xv75zy80pu5Kd3n6D9y1rMqo24pW7A9Q6M5W/xl91V/KUsnq7yFrWf3px/T/2wXwPooWPU9/dOHkU0+PJaQ/lK/fI7W7ORWKClZ/81d/+1e/T6u/7atlf/jjIyvfYh2rRavjtT8zqWX1nxQsee75/sK1v3V8ymlnxGVUtFV/9xnAThQt0Oe119bHu1WVSy4qFRWU/us4+0/bm5XgWC1asbvVVv97j+5k9T8eAWiOogUadGf7wIxZ4aDvHdJ/R/eVf/5muOSyK8KKV15pLBXi/35z1jnnhr33+WJXFq2x/49W//+s/e6wPur3bXXXz/9HC9RD0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtMAJ27NgRpt41Lez50U+EvfbeJ7zw4kuNOdW0zrLly8NZ55wbPv7JT4cP7LZHXP/oY44L8xc8HrZv395YMm+46wNoD4oWKEyFdtvEyWH3D+4Zy65O0W7bti3cdPOt/evkcsZZ54SNGzc21hhouOsDaB+KFihIhfe73/9H2G2Pv+0vuFZFqztRFbPWUc459/ywes2aOP31N94IN9x0c7wz1VgXX3JZ3IY33PUBtBdFCxSyefPm8OvzL4iFpsL72jf2q1W0mqdlmhXhg3MeDh/c82Nx3JmzZjem7jTc9QG0F0ULFPD222+HE086ub9kr7/xpjD3kUdbFq3uOi//7VVxuQMP/n5Yu25dY85AW7ZsCSefenpc7sijjul/C3i46wNoP4oWaDPdQY678OJYYnqL9v4HZsQCnPfY/DitWdGuX78+fOuAg+JyV1x5dWNq3oMPzYkl/rF/+FR49tklcdpw1wfQfhQtUMDLK1bEO8UFjy9sTAm1ivaJxU/2v6Xr181ZvXp1/9vREyZOitOGuz6A9qNogRFSp2gnT7kjLrP3Pl8MS5cta0zN27hpUzj62OPj8r8+b1y8ax7u+gDaj6IFRkidov3j+OviMvvtf2DYsGFDY2reu+++G44/8aS4/LHHnxA2bdo87PUBtB9FC4yQOkV73rgLaxel2PJWlMNdH0D7UbTACKFogd5E0QIjhKIFehNFC4yQdn+PduvWreEXp5w6oCiHuz6A9qNogRFSp2j5qWOg+1C0wAipU7T8Hi3QfShaYITUKVr+MhTQfShaYITUKVq9fcvfOga6C0ULjJA6RSuap2W0LP97DzD2UbTACKlbtLor9f+f7GlnnBlWrXo1Tk//P1n9X7NpkQ53fQDtRdEChdjvqLZKrnhVfjfdfGvY/YN7ZtdRzjjrnMq3fIe7PoD2oWiBQoZTtKI70GXLl4ezzjk3fOazX4jL6k706GOOC/MXPB62b9/eWDJvuOsDaA+KFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIogUAoCCKFgCAgihaAAAKomgBACiIou0wL7z4Uthr733CeeMubExBSudG50jnCgA63Zgp2k2bNodjjz9hQAHZtA/stscu2W//A8OGDRsaSw6OtmHjNLug57Y/nIK08eY9Nr8xZWRMmDipf//1+VBoPe27jqEEPQeH/uiI/udU2+MfIwDGgjFRtLq4qjjrFpmWGepFOF1XpVdV2lrOislKcqhFJdqGxhjqPxCGol0FWbr49Dz4/dTjktsDgHbp+KK1t1J1Ia9zMdfy+377gCG9raiC012TX7dqvHR6O+5GNZa/ayutHfts/D86Skife33ejv0GgNLaVrS66KVvs7brLs/uYuoUreanF2R/J6Qxqt4Ozu1vOp5oXY3h3y6uKmm/nI2rc2XTLNruylWvxo9WtLY/tozWT8e0dZ95dkl2+tm/Pj9+tOMX7e9Pjj4mfPNb3xmwvOLPjZbTvuqjjadx7LHd6fvzZvNsHE1L3xGwaQsXLcrus8bzx65l9bnGFo2lx35MAOhUbb2j1YXQLoaii7RdOD27GKdpdYdiF/IqurCnd592wdbYStXbwMZf4JvtU3ps2mb6PcS0iLROuo/+mDTtl6f9qn9MzVPMU08/0z9P0rGMn54uo4+2n/7zdJ7t8yGHHR73W9M0T2PZYx2f/9yfLx2T9t0vJzaO7Y/RY9tP27Ydu43hH2u+PgJAp2tr0eYu1L4ohktjNStazcvN10VeF3FfOJpmZWqFqGn+js6OITem9kXzrPi0ro3jS0M0zcrGLye2z1rWl6xUHY/4Mb10uh2DPdZ49pyk+6LHdkw2ji+33GOtk84Tv+9+m/qYHpMfS/x+SHoMki4DAJ2qrUVrF0RdTFUc/m7J04XWSs7HX0hzchdpk5abp2kq0Kp1xe+7V3VBT/fFL5fO8/tm27Fj9sWeOz491nJ+H6r2tWq6xlC0Hf+cpMfmt69l/J1ns8fpuOl+6KMer1y5asAYkttn7YN/nG5bH9N/lABAp2r7D0Pp4q27k9wFf7g0nhVBysokpYu09mfa9Ht2uch7tlxa9lYS6UU9LQO/b7l5GtuKyGhbfp+1nF/PWBnZvmkdv56pmq71dOyKPz6/z+LXT8uz2WON6Y9PH/25tGVzXxPpPueKV5/7f5BoXL8OAHSythetXShzxTJcaTEYXYCr7ma1vF2004t6SvN8qWo8XeB9OUlafOK3o482jsbQ5/ZY69jdrGLnSfN0l2bHoGkvvrS0/3MVleb5sb2q6WLFl873+yz+sfbTL9/scbptv7+i6Zqffk1U7bP2QxFtR+fFl7ym2XwA6HRtL1rRBbSdF0KN5ctJsfGtRNLt2cXdX8itOH25eLaObcPfRXm2nC74/rGNa/ukMTR91uwH48eH5jy8S9lov7WepmkZm6dpth+KtmX776drvNxP7/rtpPtrbNuSLqPpeqzprR5rHH/+tZ++GMVvS6qORev4eVpP++S3rcd+ewDQydpetLpQ+ruZbjTUY0zLSuOoXKxE03JqF203LSbtg/bFilWPS2xb0qIcrrS0AaCTFflhqG6/21ApDvWHcXRu/F2cFZ2oPKruoodK4+fGVKnquSpVrkbb1fb9cQ6VjdXO0gaA0oq8dQwAAHaiaAEAKIiiBQCgIIoWAICCKFoAAAqiaAEAKIiiBQCgIIoWAICCihet/ghD+mcHpWp6jv0hjDp/qEB/EML/cYTh/BEN+8MU9scdOu0PcdixVZ1HneP0j2IAAEZW0aK1C72P/rKPyiudrmh5lUJuXlV8+VohWulYEeXWq1Oa2h9F47yycmUcazillf5VKL/vQ6F9S4/jtomTwxOLn2w82vmPhVJ/2hEA0FqxolUBqEj0B/V9GdiFX/83qf/faoyWrVtmVoS5ctbYVrJ+PH1ud4BaN12vVerehafSUtTn/vFQ+HO15LnnwymnnRFz5dXXhCuuvDps27Yt7mu3/+1pAOhkRYrWyk90x6bSs4Lzf3dX05qVjZar+3dy7e7VltW4VsTaropd8+veRaqgtGyzUq27fxpD++CXs/0bqvR4d+zYEe6+597w4b//ZLjw4kvCli1b4nTtI3e0ADB6in+P1grBClYF48vW07zcXWRV/DgqLT0+5LDDdxnbxq1T2EbLar1mrMSblZiVrO2zlbcvSbHz5JfTtHR9xZ9LG2PmrNnh/AsuCueev/NOedLkKXG65ttYAICRV6xodYH3peDZvKoCqCqHqukqPBWsFY8ea5vatrajx1a2+lw0hsbStDRaVsvZssOlffF3lfro3861fdW+i+2v7aPthx9H8/xb7/Y28QUX/SbO2759e5yu+VouPWcAgJHR9qK1QtNHK5C0yBQrRH3uy1NlMf66G/rn+WjMlI2jefrcyilXyBpbd4fpPK1vZWZsvHbQOP7OV+dl328fED/a/vrta9uK7a/th42zalX++9tVtF7u3AEAyiv+1nFdVaVsBaSysGl2l6ySmjb9nlhIKisrMr9sGistozHS0spNGw5t05e7xrU7U/+5pMWrj37/bXq6XhUtxx0tAIyeIkWri3/6fcU06V1lTt0ySe/YcnejGsOXsckVkZbRdjUv93iwVI5+/3zx5krYv41s0v3P7XdOOj4AYGQVKdpWF3eVjt2ZSXrXVidVxZoWktF8v47Rtv2+iPZbY9iYuaLUPtj8VnLHa+OpMP3byJpuj3UM6T9Y/D6l+52jcer8YwUAUEaRolVZ+HJIY2/95li56G5NZXft+Ouzd3gmLVYrwVzSMaxQ/TJWgPpo3x9Ni8rm1S0vLe9LUY9tO6LPtW07Tm3v8UVP9G/f6HPtrxVyejw52sfh3I0DAIan7UWbFl/Kl4WoAFQwVnRWYOmdmJWRFZIVh787lFwB+X3SvNw4KS2rfdFydQqtSnp3XJf2y+5sjY5NGcyY6XkEAIysjvlhqG7lS36w/D8KFP8PChWo/qHQ7O1jzRvuPxQAAMND0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRE0QIAUBBFCwBAQRQtAAAFUbQAABRUvGg3bNgQDv3REeGFF19qTNnVhImTYkTL7bX3PuEDu+3RNPMemx+XHyqtv9/+B8b987R97W86PUf7fOzxJ4RNmzY3puRpvpbLHUcuzY5tMPsn2sfzxl3YeFSP7a/W1Xb0uT7ac1Pn3NfdT79/frvGprXaZp3lNC93vqvix9JxpF/Hmq9tatt1DeX5EDv3rdat2qdW58fm+3Mveuyntdr/wX59Gu2Xjs+fX6BbdETRahmVnl7E6Qu1zgV0sGx76YVV27l2/PW7TK+6AGh/cxe1VN1jqLPcYC5kQzl3OiYds62j7WiM9PlodVEczH76i7ffZ//5KytXxvmeP/91jlXzbPlWtD9+LG1LMVVfQ/7c5dh+DqZsNZ7GnTX7wZbrVh1js/OjY7HXqJb75Wm/6n9u7bj1uE7R13neNUZ6zpql7nMGdKq2Fq1dEOomvXDpBTpt+j3x44svLa28kPn1hkIvdEXj+AuH9kGPdUHL3e2mtH6di0Czi5yXLpe7aOWm2bnTPH1edd6qYsdg58XTeJq/cuWq+FHL24V3328fED/m5PYzpW2l+9Istp9ix2nnqs45tq9PGye3jj7XNJWNTde2tK9aXseu41I0Vrqu/7rRsn7/WyU997Z/6deilkun6XyrCNPx/OM0GmPhokW7rGfR8dgx2DnTNu1rLafu827nTWP6Yk/H13K2bWCsavsdrV4odlGyx/6Fo8d64dgLMX1h2mMVrV/P6IWvGLsY1X0xajy9sG1Z/6LXuPZ5ulyOlq+zXdvH9EJWFb8P/txIbpo+z50rHZs/V3VpPF2EbX+077nxJV22Tqwk/LlvJb3gat3c2LnYObAx9K6Fptm51DTbDztnft+uuPLquKz2WcvqH4Oab8eu5ZT0Ll/j1D3/tk1jx1e1vraTu8O0Y0y/Ju1r0I6pFXt+7FwZO2dLly4b8vMuGjO3TJq65w/oZEXeOtaLw17semHZRdpe7Hrx2gtOtLy9CO2FXPeO1sbMXVyq2Dq5sdM0G7fVxcIuvLa9Vhe5dDk7F/5c5ab5c2xyy2l//bnztHzVnU0urc63jsFfWJtpdR7TfdbjtNTqnGPN0zLaJ/0jStFYeqzp/h93Khktr3n2dZhuU2x+7lg1tt93Wza3j1pO27TnQeVu262KlrNvddiYdozpc9Ps/Gjb6dh2PFo+nZeWu6flc+eiivar2R0t0A2KFK1/8fgXjl6E/sLj+QuNlq97R9su2k+7CBt/0dL03IUvd1FLVV3k0otMys6F36fcNH2eniudy/Q81Tl3Gis9Dyl/XqpoOzo/6THXZecsvWjrGHNvWVedY8/vtz73xanH2l8rEX30Y+lz/1i0jNbRsdrnVefF9q/V+a9S53kR7aO+FrRs7ucNfOx40q+LutvKafW823lI96VZBlPcQCdqW9HqhZArombJ3SHoscpH3xOsGm+oFyszmBe7lstdOEX70Wy+0Xwd01NPP9Nyu/6c6ONQinYwz0X6HNRdt9lx2/lV+VhxDYb2R/s1mHVtm1UXeNE8228rBPtasuO29bVt+9z2Jz0HuW1pPS076fY7dlm+Tqr2X/unfdfHKraf/jnVeOl51Dz/NWTnwkfnQvO1rn+9aTyblxrK856OL9qGPU9ANyhyR2v0YrSLdrMXjr9I5i4M7X7hpRca0efaRu4CUkUXiDr7pflWtP4O1qbbY23bF2ZuP6v23a9XRfubXtRSGqvVeWj1fNh5sbG0fEr7miuvZvEFoq+R3DJp0tLR/uh50F2x/eCd9lP7rGn2WONreR2j1kmPV8vntqekx5t7zsTGzp2fZuP72GtF29DXkv1ksu1ruo3cNrUtxdjzZudB8/S5Xst+7JSWs/XSbaTqHp/fL2CsKla0eoHqhWlvAeuipote7sXnL0T2whYtaxc8vXD1VlizF29dGiP3oq5K1YvdLiy5C48/Jrvw+J/crYovhtwFOjdNn2uarWe0f37f7bHtjx/DaJr946hZmh23f2s3t7/N5Iqgjjrr2deRCskKSufjkMMO7z8e+/qzr7sqdi693D7o+PWc+ufVaBu2H600e848O0b/3NhzYu+opPutx+nza3et2j//uIptw45RH3PPu6brXGibuX01dn6V3LkDxpK2F629aO1ioxeaLwF74fqLkT7XdC2rF7Qe20VP0+wFqc/9HaDYxa3qBVuHtmNjpBcGzfP76ulYq7Zr+6x5VfuveaXuaLVvOpe6uBq7cIn2KXcB01i58+D5Y/M0PX1uxfal2ZhGY2rsdIxW6qxn++f3JT1ee5yOpfOk86X17TzauTTN9sHmaX1Lun4z6X5W0ba1XNVzk9tmeix+W/r69/M0bvoatLHT49Z6zZ53v69axn8Np/sEjGVtK1q7EKUvjvQFZPQCtgu9vZit8PTC02N74foXpJbXT2QaTdM8mz8Y2p5dIPzFRdu2i2Gzf01rvaoLicZWbP80pn1uY+fit6ePdnFvFb+etpU7H3aejY1v51l0LDqm3DZ8/Ph2XK0uqlrPbz/HxvL7VEed9TQvd15ydK60vI2brue/RtLk9sHG0XyNbefeP2/N+K/PZtJjtOfTnmf73G9Tx+KfF7+t9GvGz7NjGurzbvtqY/pzqHcZcusAY1HR79GKXkS5ojU2X3de46+7IS6nqEz9xcm/6Oz3GodC6+lCozH9BdFe7FUXjBy/f2ns4qPt6Q5Ayyrp3YDX6lxV8ev57YnOm+1T7qKux1rXjlsfW50HfzHX+hq3zkXRzlduP/x+Nrtw2/Zs2brRPvv9zml1rjwtmx6zHZ99XamkWo2XOyd+vTrR+fK/16r90vnT49y5tHm2TTsWm64x7DzpWPy2FP8PhfQc5KTHaOvaeP7YjT8Hdj6Bsap40QIA0MsoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKAgihYAgIIoWgAACqJoAQAoiKIFAKCgthbtE8++QAghPZWSxt80kYxwSmh70b755puEENITGYmixcihaAkhpMNC0XYXipYQQjosFG13oWgJIaTDQtF2F4qWEEI6LBRtd6FoCSGkw0LRdheKlhBCOiwUbXehaAkhpMNC0XYXipYQQjosFG13oWgJIaTDQtF2F4qWEEI6LBRtd6FoCSGkw0LRdheKlhBCOiwUbXehaAkhpMNC0XYXipYQQjosFG13oWgJIaTDQtF2F4qWEEI6LBRtd6FoCSGkw0LRdpeuLtpHHns8HH3iqZXR/LVr14ULLr06TLnrnuwYhBAy0qFou0vXF+0Jvzw7PLvk+ex8haIlhHRaKNruQtFStISQDstYLdrX33gz3DvzoXDdLZNibp92b1i6/OWwY8eOxhKtLX56Sbhp4h1h3WvrG1OGb/v27WHuYwvDrZOnhtc2bGhMHTkUbaZobZp/m/l31944YD2NqbFt/q2T7oyPtU2/HCGEDDZjsWg3bd4ci/X2vmvpildWxUy954GwYNFTHVG0sx+eF8dds/a1xtQQXln1apg0dXrYuHFTY0oZFG1StPbYF6uVqi1jj61U7bEKl6IlhAw3Y7FoX35lZRh/88RYlMNRomirPPXs82HiHdMoWhnJotWyp5w1bsA6afnqY3qHq/UpWkJIOzKWi1bFtaLvblZ3kakH584bUGwqU5WqL+edRTsl3gnrrV6Nefd9M8M7Gzc2lti5zKQ7p4fHFi6Oy2o53Z0uWLQ4XH/r5Bh97vdB2/YF/uj8hfHtbZ0LpWThdn3R2lu7adI7WHvs4+9UFZXrir4vpl+edcEuy9uyFC0hZLgZi0W7ZcvWMP2B2f3FpQKc31eEW7ZubSxRv2i1vsp15aurw5PPLInFOWvOI/3FGZfpK+A5jy4Ir65eG6bdOyOW5rS+dfR45kNz4/zlL78Sl5e0aLds2RKXmzBlWvy+rd76Hsxb3IPR9UU72Dtae+zL1d/RUrSEkNIZi0UrW/tK9Znn/hQmT70nFp22c/+sOeG9bdvi/Pp3tK4Q+8ZUgeoOVmUo6TLL/vJy3JYV69p1r/XNnzJg3LRoJd2fUijapGhz61C0hJCRzFgtWk8/gTx56vRwy6SpYcPrb8RpQyla3WXOnvPogPXSZVSwvmhz41K0LYxk0eqjHmu6LWMlat+X1Uf73KL1dAdM0RJChpuxWLR6W3fre+81Hr1fkP5OdChFq7d4p05/IP408+bN78ZpFO1OY/qO1hemzdc0K+D07tUet9oWIYTUyVgsWpXaDRNuDwsWPRnLTG8hq9geXbCo/3ufCxc/Fb+Xqh900vdf75v5UNyXtGj1tvNDcx8Lq/uut/P61tdj/2tC7SraOY/Mj/uzcPHT8fu0fI8288XYKkMpWsXuTi16rDtYvWWst461jJWr5uvjPffP2uWnlQkhZCgZa0Wrgnr77XfCnEfnxzLT+LdMujMWmH1/VvQDU7rLVbnpJ4Wf6rteTrzj7l2KVneZ+kEqFbd+EEqf+3HaVbSvrd8Q77hV5NP7ruF2591uXV20IxmVui9iQggZasbiHS2qUbSDjN0B29vIflr6fVtCCBlKKNruQtEOIfaTx/7tZUqWENKuULTdhaIlhJAOC0XbXShaQgjpsFC03YWiJYSQDgtF210oWkII6bBQtN2FoiWEkA4LRdtdKFpCCOmwULTdhaIlhJAOC0XbXShaQgjpsFC03YWiJYSQDgtF210oWkII6bBQtN2FoiWEkA4LRdtdKFpCCOmwULTdhaIlhJAOC0XbXShaQgjpsFC03YWiJYSQDgtF210oWkII6bBQtN2FoiWEkA7LSBQtGdmU0PaiJYSQXgrQSluLFgAADETRAgBQEEULAEBBFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAW1tWgffvVxQgghZMymhLYX7bMbXiCEEELGXChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQjo4T6x5Nlx+/x/Cp3/+tfBfD949/OcD/yr8z3/5u/CdcYeGe5+fnV2nk/LkuufCxdOvDtc/elt2PiG9EIqWkA7N7KWPxoJVuX702M+Gn9/4q3DJPb8LB1/04/A/vv834VMnfjk8vHxBdt1OycwX54YPHbVXOHPSBdn5hPRCKFpCOjALVz8d9j3ne7Fkj7jq+Hhn6+erhBU/rRNz8/zbw3//3v+laElPh6IlpANzw7xJsaD+8YQvh7kvt/76n7TorvCl0/aPby//l4P+Ot4J37JgSnhm/Z/j/Dufujf81Q8/Eg674phwzpSLw/8+7CPh747+dCzrH/ZN++vDPxaumjk+jqH1T7nlnLje3L8sCEdc/W/x7WpN/8cTvhTfBrZx9fH3D94Yp2u+7rR/cMlPwkPL5oWfXXtKfKx/LFi0LdtnQnolFC0hHZhj/uMX/Xezufk+umtUEf6fw/8+nHj96eGMiePi27UqOZWglrGi/W/f3T187GefC+dNvSxMePzO8NRrz8fys5JUEV8967owZ/n88MjLC2Nha+wj+8r2oruvDJ89+RtxuZsemxzHvfDu38Z1tT1tV9v/0L/uFbc75cnp4dDLjo7HoY/XPHhDnOb3nZBeCEVLSAdG5aeCavWW6+K1S8J3zj803v3qLtim37ZwavhAX0F+8bRvhwWrnuwv2o8ft0+Y9dIjA8awbf2qb1t2p6qoWDX91Annxu8FK1Ofvi+W6iGXHtV3p70gfPrfvxrH1fh+TIv2v85xENLNoWgJ6cDUvaNV+ekHpT78073DQ8se22X63xz5yXDv8w/2F+0/n3VQ/P6vH8OK9tqHb8lOz0XjqMw15lfOOCA8/upTA9a1ULSEULSEdGT0/dKd3xNt/j3akkWrktd0vR2st319Jj0xLdzRGHOfU/YN81cuHrCuhaIlhKIlpCMz75Unwud/uV8sqV/cdFb8fVQ/f8YLD8cfZBrsW8eDKVor+5/+4aQBbylrX/R43opF8a1jbUfbS+frc4qWEIqWkI7NXc88ED5yzD/FovrEcZ+PP2x0wV1XxD9WoZ8u/tzJ34w/sDRx0V2xROv8MNRgilYF/c2zvxvL9utnHRy3rR+W+l+HfTicM+U3sUzth6G07dMmnBe3r8/1E8ea/9sZf4xja3/0+7+6G/bbIKQXQtES0sFZsOqp/p/kVWHF0ur7/Pjxp8a3h225ur/eM5iiVbT9n/3x5PiTx1pm9x9/Iu6Ppmu+xr9q5rVhz6M/E+drOf06kH4taOf6T8afONZ+6VeKTr/t/PiTzn4bhHR7KFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYChaQgghpGAoWkIIIaRgKFpCCCGkYMZM0RJCCCFjNSW0tWgBAMBAFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAVRtAAAFETRAgBQEEULAEBBFC0AAAVRtAAAFETRAgBQEEULAEAxIfx/ly2VO+PZki4AAAAASUVORK5CYII=" alt="">
参考资料:
https://baike.baidu.com/item/仿射加密法/1708885?fr=aladdin
https://blog.csdn.net/qq_42777804/article/details/91484576
- Bugku - CTF加密篇之聪明的小羊(一只小羊翻过了2个栅栏)
聪明的小羊 一只小羊翻过了2个栅栏 KYsd3js2E{a2jda}
- Bugku - CTF加密篇之滴答~滴
滴答~滴 答案格式KEY{xxxxxxxxx}
- BugKu CTF(杂项篇MISC)-贝斯手
打开是以下内容 先看一下给了哪些提示 1.介绍 没了?不,拉到最底下还有 2.女神剧照 密码我4不会告诉你的,除非你知道我的女神是哪一年出生的(细品) 大致已经明白了,四位数密码,出生年份 文件是以下 ...
- 那些年做过的ctf之加密篇(加强版)
MarkdownPad Document *:first-child { margin-top: 0 !important; } body>*:last-child { margin-botto ...
- Bugku CTF练习题---加密---ok
Bugku CTF练习题---加密---ok flag:flag{ok-ctf-1234-admin} 解题步骤: 1.观察题目,发现规律 2.发现所有内容都是ook写的, 直接上网搜索一下原因,发现 ...
- Bugku CTF练习题---加密---聪明的小羊
Bugku CTF练习题---加密---聪明的小羊 flag:KEY{sad23jjdsa2} 解题步骤: 1.观察题目,发现其中的信息 2.经过题目判断,得知该题属于栅栏密码的一种,并且介绍中表明了 ...
- Bugku CTF练习题---加密---凯撒部长的奖励
Bugku CTF练习题---加密---凯撒部长的奖励 flag:SYC{here_Is_yOur_rEwArd_enjOy_It_Caesar_or_call_him_vIctOr_is_a_Exc ...
- Bugku-CTF加密篇之+[]- (+++++ +++++ [->++ +++++ +++<] >++.+ +++++ .<+++ [->-- -<]>- -.+++ +++.< ++++[ ->.........)
+[]- +++++ +++++ [->++ +++++ +++<] >++.+ +++++ .<+++ [->-- -<]>- -.+++ +++.< ...
- linux初学者-磁盘加密篇
linux初学者-磁盘加密篇 因为保密需要,一般系统中会在文件和磁盘中进行加密,但是文件的加密比较容易破解,不安全.所以在特殊需要下,会对磁盘进行加密,磁盘加密后在磁盘损坏的同时,其中的数据也会损坏, ...
随机推荐
- Chrome浏览器控制台报Refused to get unsafe header "XXX"的错误
最近在调试后端下载的接口时在浏览器的控制台中发现了红色的错误信息,例如Refused to get unsafe header "XXX":前端是采用XMLHttpRequest对 ...
- ArrayList、LinkedList区别(jdk8)
/** * jdk8 * ArrayList:底层动态数组实现(未初始化指定数组长度) * add():添加元素时,才初始化数组长度为10.容量不够时,动态扩容策略为: 原容量 + 原容量*0.5 * ...
- ALSA lib-io plugin
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm_external_plugins.html External Plugin: I/O Plugin ...
- Windows中配置maven环境变量
添加maven环境变量 添加新的系统环境变量:MAVEN_HOME 设置其值为你安装的目录:D:\IT_program\apache-maven-3.6.0 更新系统PATH 变量 添加变量值:%MA ...
- Docker学习(六)Dockerfile构建自定义镜像
Docker学习(六)Dockerfile构建自定义镜像 前言 通过前面一篇文章可以知道怎么去使用一个镜像搭建服务,但是,如何构造自己的一个镜像呢,docker提供了dockerfile可以让我们自己 ...
- SpringMVC处理中文乱码
SpringMVC自带过滤器 添加至web.xml文件 <filter> <filter-name>encoding</filter-name> <filte ...
- centos7 防火墙的操作
参考文章:http://blog.csdn.net/Joe68227597/article/details/75207859 http://www.cnblogs.com/cocoat/p/66054 ...
- 使用TensorFlow训练模型的基本流程
本文已在公众号机器视觉与算法建模发布,转载请联系我. 使用TensorFlow的基本流程 本篇文章将介绍使用tensorflow的训练模型的基本流程,包括制作读取TFRecord,训练和保存模型,读取 ...
- ubuntu 报错 Unable to locate package
解决方案参考 https://blog.csdn.net/u010622613/article/details/83017163
- centos软连接的增删
软连接操作 增加 ln-s 源文件 软连接名 修改 ln –snf 源文件 软连接 删除 只删除软连接 rm -rf 软连接名 只删除源文件 rm -rf 源文件 -r循环 -f强制