Wilson's Theorem
Proofs
Suppose first that $p$ is composite. Then $p$ has a factor $d > 1$ that is less than or equal to $p-1$. Then $d$ divides $(p-1)!$, so $d$ does not divide $(p-1)! + 1$. Therefore $p$ does not divide $(p-1)! + 1$.
Two proofs of the converse are provided: an elementary one that rests close to basic principles of modular arithmetic, and an elegant method that relies on more powerful algebraic tools.
Elementary proof
Suppose $p$ is a prime. Then each of the integers $1, \dotsc, p-1$ has an inverse modulo $p$. (Indeed, if one such integer $a$ does not have an inverse, then for some distinct $b$ and $c$ modulo $p$, $ab \equiv ac \pmod{p}$, so that $a(b-c)$ is a multiple of $p$, when $p$ does not divide $a$ or $b-c$—a contradiction.) This inverse is unique, and each number is the inverse of its inverse. If one integer $a$ is its own inverse, then \[0 \equiv a^2 - 1 \equiv (a-1)(a+1) \pmod{p} ,\] so that $a \equiv 1$ or $a \equiv p-1$. Thus we can partition the set $\{ 2 ,\dotsc, p-2\}$ into pairs $\{a,b\}$ such that $ab \equiv 1 \pmod{p}$. It follows that $(p-1)$ is the product of these pairs times $1 \cdot (-1)$. Since the product of each pair is conguent to 1 modulo $p$, we have \[(p-1)! \equiv 1\cdot 1 \cdot (-1) \equiv -1 \pmod{p},\] as desired. $\blacksquare$
Algebraic proof
Let $p$ be a prime. Consider the field of integers modulo $p$. By Fermat's Little Theorem, every nonzero element of this field is a root of the polynomial \[P(x) = x^{p-1} - 1 .\] Since this field has only $p-1$ nonzero elements, it follows that \[x^{p-1} - 1 = \prod_{r=1}^{p-1}(x-r) .\] Now, either $p=2$, in which case $a \equiv -a \pmod 2$ for any integer $a$, or $p-1$ is even. In either case, $(-1)^{p-1} \equiv 1 \pmod{p}$, so that \[x^{p-1} - 1 = \prod_{r=1}^{p-1}(x-r) = \prod_{r=1}^{p-1}(-x + r) .\] If we set $x$ equal to 0, the theorem follows. $\blacksquare$
Problems
Introductory
(Source: ARML 2002) Let $a$ be an integer such that $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{23}=\frac{a}{23!}$. Find the remainder when $a$ is divided by $13$.
Solution
Multiplying both sides by $23!$ yields \[\frac{23!}{1}+\frac{23!}{2}+...+\frac{23!}{23}=a\] Note that $13\mid\frac{23!}{k}$ for all $k\neq13$. Thus we are left with \[a\equiv\frac{23!}{13}\equiv12!\cdot14\cdot15\cdot16\cdot...\cdot23\equiv(-1)(1)(2)(3)(...)(10)\equiv\boxed{7}\mod13\]
Advanced
If ${p}$ is a prime greater than 2, define $p=2q+1$. Prove that $(q!)^2 + (-1)^q$ is divisible by ${p}$. Solution.
Let ${p}$ be a prime number such that dividing ${p}$ by 4 leaves the remainder 1. Show that there is an integer ${n}$ such that $n^2 + 1$ is divisible by ${p}$.
Problem
For how many integers $n$ between $1$ and $50$, inclusive, is \[\frac{(n^2-1)!}{(n!)^n}\] an integer? (Recall that $0! = 1$.)
$\textbf{(A) } 31 \qquad \textbf{(B) } 32 \qquad \textbf{(C) } 33 \qquad \textbf{(D) } 34 \qquad \textbf{(E) } 35$
Solution 1
The main insight is that
\[\frac{(n^2)!}{(n!)^{n+1}}\]
is always an integer. This is true because it is precisely the number of ways to split up $n^2$ objects into $n$ unordered groups of size $n$. Thus,
\[\frac{(n^2-1)!}{(n!)^n}=\frac{(n^2)!}{(n!)^{n+1}}\cdot\frac{n!}{n^2}\]
is an integer if $n^2 \mid n!$, or in other words, if $n \mid (n-1)!$. This condition is false precisely when $n=4$ or $n$ is prime, by Wilson's Theorem. There are $15$ primes between $1$ and $50$, inclusive, so there are 15 + 1 = 16 terms for which
\[\frac{(n^2-1)!}{(n!)^{n}}\]
is potentially not an integer. It can be easily verified that the above expression is not an integer for $n=4$ as there are more factors of 2 in the denominator than the numerator. Similarly, it can be verified that the above expression is not an integer for any prime $n=p$, as there are more factors of p in the denominator than the numerator. Thus all 16 values of n make the expression not an integer and the answer is $50-16=\boxed{\mathbf{(D)}\ 34}$.
Solution 2
We can use the P-Adic Valuation of n to solve this problem (recall the P-Adic Valuation of 'n' is denoted by $v_p (n)$ and is defined as the greatest power of some prime 'p' that divides n. For example, $v_2 (6)=1$ or $v_7 (245)=2$ .) Using Legendre's formula, we know that :
\[v_p (n!)= \sum_{i=1}^\infty \lfloor \frac {n}{p^i} \rfloor\]
Seeing factorials involved in the problem, this prompts us to use Legendre's formula where n is a power of a prime.
We also know that , $v_p (m^n) = n \cdot v_p (m)$ . Knowing that $a\mid b$ if $v_p (a) \le v_p (b)$ , we have that :
\[n \cdot v_p (n!) \le v_p ((n^2 -1 )!)\] and we must find all n for which this is true.
If we plug in $n=p$, by Legendre's we get two equations:
\[v_p ((n^2 -1)!) = \sum_{i=1}^\infty \lfloor \frac {n^2 -1}{p^i} \rfloor = (p-1)+0+...+0 = p-1\]
And we also get :
\[v_p ((n!)^n) = n \cdot v_p (n!)= n \cdot \sum_{i=1}^\infty \lfloor \frac {n}{p^i} \rfloor = p \cdot ( 1+0+...0) = p\]
But we are asked to prove that $n \cdot v_p (n!) \le v_p ((n^2 -1 )!) \Longrightarrow p \le p-1$ which is false for all 'n' where n is prime.
Now we try the same for $n=p^2$ , where p is a prime. By Legendre we arrive at:
\[v_p ((p^4 -1)!) = p^3 + p^2 + p -3\] and \[p^2 \cdot v_p (p^2 !) = p^3 + p^2\]
Then we get:
\[p^2 \cdot v_p (p!) \le v_p ((n^4 -1)!) \Longrightarrow p^3 + p^2 \le p^3 + p^2 + p -3\] Which is true for all primes except for 2, so $2^2 = 4$ doesn't work. It can easily be verified that for all $n=p^i$ where $i$ is an integer greater than 2, satisfies the inequality :\[n \cdot v_p (n!) \le v_p ((n^2 -1 )!)\].
Therefore, there are 16 values that don't work and $50-16 = \boxed{\mathbf{(D)}\ 34}$ values that work.
Wilson's Theorem的更多相关文章
- Wilson's theorem在RSA题中运用
引言 最近一段时间在再练习数论相关的密码学题目,自己之前对于数论掌握不是很熟练,借此机会先对数论基本的四大定理进行练习 这次的练习时基于Wilson's theorem(威尔逊定理)在RSA题目中的练 ...
- The Hundred Greatest Theorems
The Hundred Greatest Theorems The millenium seemed to spur a lot of people to compile "Top 100& ...
- Parseval's theorem 帕塞瓦尔定理
Source: wiki: Parseval's theorem As for signal processing, the power within certain frequency band = ...
- 利用Cayley-Hamilton theorem 优化矩阵线性递推
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- Wilson定理证明
Wilson定理证明 就是那个\((p-1)! \equiv -1 \pmod{p}\),\(p\)是一个素数. Lemma A \(\mathbb{Z}_p\)可以去掉一个零元变成一个群. 即\(\ ...
- 生成树的个数——基尔霍夫定理(Matrix-Tree Theorem)
树有很多种形态,给定结点个数,求生成不同形态二叉树的个数,显然要用到Catalan数列. 那如果给定一个图(Graph)\(G=(V,E)\),要求其最小生成树G',最好的方法莫过于Prim或Krus ...
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
随机推荐
- 第三次作业:使用Packet Tracer分析TCP连接的建立与释放过程
0 个人信息 张樱姿 201821121038 计算1812 1 实验目的 使用路由器连接不同的网络 使用命令行操作路由器 通过抓取HTTP报文,分析TCP连接建立的过程 2 实验内容 使用Packe ...
- Python多重继承之菱形继承
继承是面向对象编程的一个重要的方式,通过继承,子类就可以扩展父类的功能.在python中一个类能继承自不止一个父类,这叫做python的多重继承(Multiple Inheritance ). 语法 ...
- 关于使用详解ASP.NET State Service
ASP.NET State Service服务如果启动可以解决这个问题,它会生成一个aspnet_state.exe进程,这个就是Session信息的进程.只要这个进程在,就算是重启了IIS,站点的S ...
- Ceph 13.2.8 三节点部署
bs-k8s-ceph eth1 mon osd mgr deploy 2c2g sdb sdc sdd 各20G bs-hk-hk01 eth1 mon osd mgr 2c2g sdb sdc s ...
- Golang import具体使用
使用gopath的时候,一般引用是从src下一层开始,比如src/github.com/…,引用github.com…,我的工程src/xxx.com/go-qb/…,引用xxx.com/go-qb/ ...
- Dockerfile的使用
一 什么是Dockerfile Dockerfile是由一系列命令和参数构成的脚本,这些命令应用于基础镜像并最终创建一个新的镜像. 1.对于开发人员:可以为开发团队提供一个完全一致的开发环境: 2.对 ...
- Redis5.x五种数据类型常见命令
关注公众号:CoderBuff,回复"redis"获取<Redis5.x入门教程>完整版PDF. <Redis5.x入门教程>目录 第一章 · 准备工作 第 ...
- lwip 2.0.2 snmp mib ipv6
1.3.6.1.2.1 - SNMP MIB-2 Submitted by Harald.T.Alvestrand at uninett.no from host aun.uninett.no (12 ...
- 不重启 清空tomcat日志
1.重定向方法清空文件 [root@localhost logs]# du -h catalina.out 查看文件大小17M catalina.out[root@localhost logs]# ...
- Python 实现转堆排序算法原理及时间复杂度(多图解释)
原创文章出自公众号:「码农富哥」,欢迎转载和关注,如转载请注明出处! 堆基本概念 堆排序是一个很重要的排序算法,它是高效率的排序算法,复杂度是O(nlogn),堆排序不仅是面试进场考的重点,而且在很多 ...