洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P3178
这道题目是一道树链剖分的模板题。
但是在解决这道问题的同事刷新了我的两个认识:
第一个认识是:树链剖分不光可以处理链,还可以处理 子树 ,因为:
节点 u
的子树中所有的点的编号都覆盖在 seg[u]
到 seg[u]+size[u]-1
这个区间内!
第二个认识是:线段树延迟操作的延迟标记不是标记自己,也就是说:
lazy[rt]
并不是标记本身的延迟值,而是说 rt
本身有多少个延迟值没有传递给 rt<<1
和 rt<<1|1
的。
然后这道题目就是一道裸树链剖分题,运用到了子树更新和延迟操作。
实现代码如下:
#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 100010;
int fa[maxn],
dep[maxn],
size[maxn],
son[maxn],
top[maxn],
seg[maxn], seg_cnt,
rev[maxn],
n, w[maxn];
long long sumv[maxn<<2], lazy[maxn<<2];
vector<int> g[maxn];
void dfs1(int u, int p) {
size[u] = 1;
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == p) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v, u);
size[u] += size[v];
if (size[v] >size[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
seg[u] = ++seg_cnt;
rev[seg_cnt] = u;
top[u] = tp;
if (son[u]) dfs2(son[u], tp);
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1
void push_down(int rt, int len) {
if (lazy[rt]) {
int l_len=len-len/2, r_len = len/2;
lazy[rt<<1] += lazy[rt];
lazy[rt<<1|1] += lazy[rt];
sumv[rt<<1] += lazy[rt] * l_len;
sumv[rt<<1|1] += lazy[rt] * r_len;
lazy[rt] = 0;
}
}
void push_up(int rt) {
sumv[rt] = sumv[rt<<1] + sumv[rt<<1|1];
}
void build(int l, int r, int rt) {
int mid = (l + r) / 2;
if (l == r) {
sumv[rt] = w[rev[l]];
return;
}
build(lson); build(rson);
push_up(rt);
}
void update(int L, int R, long long v, int l, int r, int rt) {
if (L <= l && r <= R) {
sumv[rt] += (r-l+1) * v;
lazy[rt] += v;
return;
}
push_down(rt, r-l+1);
int mid = (l + r) / 2;
if (L <= mid) update(L, R, v, lson);
if (R > mid) update(L, R, v, rson);
push_up(rt);
}
long long query_sum(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return sumv[rt];
push_down(rt, r-l+1);
int mid = (l + r) / 2;
long long tmp = 0;
if (L <= mid) tmp += query_sum(L, R, lson);
if (R > mid) tmp += query_sum(L, R, rson);
return tmp;
}
long long ask_sum(int u, int v) {
long long res = 0;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res += query_sum(seg[top[u]], seg[u], 1, n, 1);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
res += query_sum(seg[v], seg[u], 1, n, 1);
return res;
}
int m, op, x, a;
string s;
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++) cin >> w[i];
for (int i = 1; i < n; i ++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
dep[1] = fa[1] = 1;
dfs1(1, -1);
dfs2(1, 1);
build(1, n, 1);
while (m --) {
cin >> op;
if (op == 1) {
cin >> x >> a;
update(seg[x], seg[x], a, 1, n, 1);
}
else if (op == 2) {
cin >> x >> a;
update(seg[x], seg[x]+size[x]-1, a, 1, n, 1);
}
else {
cin >> x;
cout << ask_sum(1, x) << endl;
}
}
return 0;
}
作者:zifeiy
洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树的更多相关文章
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- 洛谷P3178 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷P3178 [HAOI2015]树上操作(线段树)
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...
- 洛谷 P3178 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷——P3178 [HAOI2015]树上操作
https://www.luogu.org/problem/show?pid=3178#sub 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 ...
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点
题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
随机推荐
- SVN客户端操作(clean up|commit|update)系统找不到指定的文件
前天电脑中毒,更新SVN的时候,发现以下错误: Can't open file 'XXXXX\.svn\pristine\7a\7ab8cc591cd8b0425a0e6331cc52756d15ba ...
- 常用css3属性
总结一下在工作用常用到的属性设置 1.设置文本的可选择性 -webkit-user-select:none/text 2.设置背景的绘制区域 background-clip:border-box/pa ...
- dingo/api 使用 知识
Dingo 能为Laravel提供一整套包括从路由,到认证的RESTful API开发工具 Laravel & Lumen RESTFul API 扩展包:Dingo API(一) —— 安装 ...
- PLAY2.6-SCALA(十二) 表单的处理
一.表单处理流程如下 1.定义一个表单,在这里表单最多有22个字段 import play.api.data._ import play.api.data.Forms._ //要使用验证和约束 imp ...
- iPhone开发之深入浅出 (7) — ARC总结
原文链接:http://www.yifeiyang.net/development-of-the-iphone-simply-7/ 通过前面几篇文章的介绍,我想大家应该对ARC有了一个比较完整的理解. ...
- 【JZOJ4804】【NOIP2016提高A组模拟9.28】成绩调研
题目描述 输入 输出 样例输入 5 3 1 2 3 1 2 1 2 1 1 1 1 样例输出 4 数据范围 解法 考虑设置左指针l和右指针r: 维护[l,r]的关于等第的桶. 初始l=r=0: 每次右 ...
- python os 模块介绍
""" 重命名文件 os.rename(src,dst) os.rename('123.txt','124.txt') 删除文件 os.remove(path) os.r ...
- 笔记:OSAL st 宏学习 do { x } while (__LINE__ == -1)
笔记:OSAL st 宏学习 do { x } while (LINE == -1) #define st(x) do { x } while (__LINE__ == -1) 这段的意思是让代码可以 ...
- linux之架构图和八台服务器
(1) (2)
- python 函数的语法规则