BZOJ 4517: [Sdoi2016]排列计数(组合数学)
题面
Description
求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。
Input
第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
5
1 0
1 1
5 2
100 50
10000 5000
Sample Output
0
1
20
578028887
60695423
解题思路
题目大概就是选\(m\)个,其他错位排列。那么答案显然为\(C_n^m*d[n-m]\),\(d[i]\)表示长度为\(i\)的错位排列方案数,然后刚开始预处理出\(d\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN = 1000005;
const int MOD = 1e9+7;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
int T,n,m,d[MAXN],fac[MAXN],inv[MAXN];
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
}
inline LL C(int x,int y){
if(y>x) return 0;
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
}
int main(){
d[1]=0;d[2]=1;fac[0]=1;d[0]=1;
for(int i=3;i<=1000000;i++) d[i]=(LL)(i-1)*(d[i-1]+d[i-2])%MOD;
for(int i=1;i<=1000000;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[1000000]=fast_pow(fac[1000000],MOD-2);
for(int i=1000000-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
T=rd();
while(T--){
n=rd(),m=rd();
printf("%lld\n",(LL)d[n-m]*C(n,m)%MOD);
}
return 0;
}
BZOJ 4517: [Sdoi2016]排列计数(组合数学)的更多相关文章
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)
题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 846 Solved: 530[Submit][ ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排公式
4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排+逆元
4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...
- Bzoj 4517: [Sdoi2016]排列计数(排列组合)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...
- bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】
第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...
- BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)
题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...
随机推荐
- mongodb的学习 (1)
1. 启动服务 (1)在D盘下新建mongodb 文件夹,在mongodb 文件夹里面新建db; (2)win+R 启动cmd ,输入 `mongod --dbpath "D:/mongod ...
- python爬虫学习(3):使用User-Agent和代理ip
使用User-Agent方法一,先建立head,作为参数传进去 import urllib.requestimport json content=input("请输入需要翻译的内容:&quo ...
- 修改Centos中的ll命令(以 K 为单位显示文件大小)
修改CentOS ll命令:以K 为单位显示文件大小 1.编辑 .bashrc 文件:vim /root/.bashrc 2.找到 alias ll 行修改为(如果没有直接添加该行):alias ll ...
- 【Codeforces Beta Round #88 C】Cycle
[Link]:http://codeforces.com/problemset/problem/117/C [Description] 问你一张图里面有没有一个三元环,有的话就输出. [Solutio ...
- 密码学之RSA基础
预备数论知识 互质关系 如果两个正整数,除了1以外,没有其他公因子,那么就称这两个数是互质关系 比如:4和7,13和61 欧拉函数 思考:任意给定整数n,在小于等于n的正整数中,有多少个数与n构成互质 ...
- 随机生成一串字符串(java)
该随笔为开发笔记 今天在公司接手了一个项目,在看该项目老代码时,发现上一位大佬写的随机取一串字符串还不错,在此做一次开发笔记 在他的基础上我做了点改动,但是原理一样 /** * 随机取一段字符串方法1 ...
- hive UDAF开发和运行全过程
介绍 hive的用户自定义聚合函数(UDAF)是一个很好的功能,集成了先进的数据处理.hive有两种UDAF:简单和通用.顾名思义,简单的UDAF,写的相当简单的,但因为使用Java反射导致性能损失, ...
- [Flink原理介绍第四篇】:Flink的Checkpoint和Savepoint介绍
原文:https://blog.csdn.net/hxcaifly/article/details/84673292 https://blog.csdn.net/zero__007/article/d ...
- PAT_A1025#PAT Ranking
Source: PAT A1025 PAT Ranking Description: Programming Ability Test (PAT) is organized by the Colleg ...
- 面试总结【css篇】- css选择器以及优先级
优先(优先级为): !important > 内联样式 > #id > .class > tag > * > 继承 > 默认 . 当选择器的权重相同时,它将 ...