HZOJ 毛一琛
直接暴搜是$3^n$的,无法接受。
正解是$meet \ in \ the \ middle$,暴搜前n/2个数,每个数的状态有三种:都不选,选为A集合,选为B集合。那么我们可以维护两个集合的差。
设状态为sta,每个数选中为1(无论是A还是B集合都为1),否则为0。差为v。
将二元组(sta,v)插入Hash_map。
之后暴搜后n/2个数。同样统计出状态sta和差v。在Hash_map中查询差为v的二元组个数。同时用数组v[1<<11][1<<11]记录两个状态是否选择过去重。
#include<bits/stdc++.h>
#define LL long long
using namespace std;
bool v[1<<11][1<<11];
struct Hash_map
{
int fi[2333333],ni[2333333],siz;
LL key[2333333],val[2333333];
inline void insert(int x,int y)
{
int k=(x%2333333+2333333)%2333333,i=fi[k];
for(;i;i=ni[i])if(key[i]==x&&val[i]==y)return;
i=++siz,key[i]=x,val[i]=y,ni[i]=fi[k],fi[k]=i;
}
inline int find(int x,int y)
{
int k=(x%2333333+2333333)%2333333,res=0;
for(int i=fi[k];i;i=ni[i])
if(key[i]==x&&!v[y][val[i]])v[y][val[i]]=1,res++;
return res;
}
}f;
int n,m[21];
LL ans=0;
void dfs(int now,int en,int sta,int vv)
{
if(now==en+1)
{
if(en!=n)f.insert(vv,sta);
else ans+=f.find(vv,sta);
return;
}
dfs(now+1,en,sta<<1,vv);
dfs(now+1,en,sta<<1|1,vv+m[now]);
dfs(now+1,en,sta<<1|1,vv-m[now]);
}
signed main()
{
// freopen("in.txt","r",stdin);
// freopen("1.out","w",stdout); cin>>n;for(int i=1;i<=n;i++)cin>>m[i];
dfs(1,n/2,0,0);dfs(n/2+1,n,0,0);
printf("%lld\n",ans-1);
}
HZOJ 毛一琛的更多相关文章
- 「题解」:毛一琛/$cow$ $subsets$
问题 A: 毛一琛/$cow$ $subsets$ 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 题名貌似是个大神??看起来像是签到题然后就死了. 首先$O(3^n) ...
- 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)
A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...
- [CSP-S模拟测试]:毛三琛(随机化+二分答案)
题目传送门(内部题69) 输入格式 第一行正整数$n,P,k$.第二行$n$个自然数$a_i$.$(0\leqslant a_i<P)$. 输出格式 仅一个数表示最重的背包的质量. 样例 样例输 ...
- [CSP-S模拟测试]:毛二琛(DP)
题目描述 $MYC$在$NOI2018$中,遇到了$day1T2$这样一个题,题目是让你求有多少“好”的排列.$MYC$此题没有获得高分,感到非常惭愧,于是回去专心研究排列了.如今数排列的题对$MYC ...
- [CSP-S模拟测试]:毛一琛(meet in the middle)
题目描述 历史学考后,$MYC$和$ztr$对答案,发现选择题他们没有一道选的是一样的.最后他们都考了个$C$.现在问题来了,假设他们五五开,分数恰好一样(问答题分数也恰好一样,只考虑选择题).已知考 ...
- NOIP 模拟 $30\; \rm 毛三琛$
题解 \(by\;zj\varphi\) 二分答案,考虑二分背包中的最大值是多少. 枚举 \(p\) 的值,在当前最优答案不优时,直接跳掉. 随机化一下 \(p\),这样复杂度会有保证. Code # ...
- NOIP 模拟 $30\; \rm 毛二琛$
题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...
- NOIP 模拟 $30\; \rm 毛一琛$
题解 \(by\;zj\varphi\) 如何判断一个集合可以被拆成两个相等的部分? 枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 \(\mathcal O\rm(3^n)\) \ ...
- ZJOI2019Day2 游记
原文链接www.cnblogs.com/zhouzhendong/p/ZJOI2019Day2 游记 4-23 乘车. 报到. 自闭. 晚上没睡好. 4-24 上午张哲宇讲课. 幕后点人上去讲题. 然 ...
随机推荐
- @EnableAsync使用
EnableAsync注解的意思是可以异步执行,就是开启多线程的意思.可以标注在方法.类上. 1 @Component 2 public class Task { 3 4 @Async 5 publi ...
- 2019-8-31-dotnet-控制台读写-Sqlite-提示-no-such-table-找不到文件
title author date CreateTime categories dotnet 控制台读写 Sqlite 提示 no such table 找不到文件 lindexi 2019-08-3 ...
- Leetcode400Nth Digit第N个数字
在无限的整数序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...中找到第 n 个数字. 注意: n 是正数且在32为整形范围内 ( n < 231). 示例 1: ...
- hdu1863畅通工程
畅通工程 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- processlist
###################### 当前会话的线程id,也就是会话id select connection_id(); ########################### select ...
- maven-home
E:/Soft/Maven/apache-maven-3.3.3 E:\Soft\Maven\apache-maven-3.3.3\conf\settings.xml E:\DellWork\Mave ...
- [Array]628. Maximum Product of Three Numbers
Given an integer array, find three numbers whose product is maximum and output the maximum product. ...
- Eclipse luna安装SVN
Eclipse luna安装SVN 1.Subversive Plug in 的安装 打开Eclipse ,Help--->Install New Soft ----> 输入 “Luna ...
- node 和npm环境安装
node 安装 1.下载node二进制文件 [root@baolin-images#>> ~]#wget https://nodejs.org/dist/v10.16.0/node-v10 ...
- vagrant简介
什么是vagrant? 简单理解,就是可以通过Vagrant这个工具管理虚拟机,比如说想创建一个centos环境的虚拟机,不需要安装系统这么麻烦,通过vagrant可以快速创建 官网地址:https: ...