题目描述

John养了一只叫Joseph的奶牛。一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草。我们可以认为草地是一个数轴上的一些点。Joseph看到这些草非常兴奋,它想把它们全部吃光。于是它开始左右行走,吃草。John和Joseph开始的时候站在p位置。Joseph的移动速度是一个单位时间一个单位距离。不幸的是,草如果长时间不吃,就会腐败。我们定义一堆草的腐败值是从Joseph开始吃草到吃到这堆草的总时间。Joseph可不想吃太腐败的草,它请John帮它安排一个路线,使得它吃完所有的草后,总腐败值最小。John的数学很烂,她不知道该怎样
做,你能帮她么?

输入

* Line 1 : Two space-separated integers: N and L. N<=1000
* Lines 2..N+1: Each line contains a single integer giving the position P of a clump (1 <= P <= 1,000,000).

输出

* Line 1: A single integer: the minimum total staleness Bessie can achieve while eating all the clumps.

样例输入

4 10
1
9
11
19

样例输出

44


题解

区间dp,膜拜popoqqq

因为路过的草一定吃,所以吃的草一定是一段区间。

用f[i][k]表示吃完从i开始连续的k堆草,且此时在左侧的最小腐败值,

用g[i][k]表示吃完从i开始连续的k堆草,且此时在右侧的最小腐败值。

这样我们发现腐败值很难求,并且无法保证最优。

所以我们可以先计算出每段时间所有草增加的腐败值,这样既能保证dp的成立,又方便计算。

状态转移方程应该很容易由f/g[i/i+1][k-1]推出来。

由于空间限制,需要用到滚动数组黑科技。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
long long f[1001][2] , g[1001][2] , p[1001];
int main()
{
int n , i , j , k , cl = 0 , cr = 0;
long long m;
scanf("%d%lld" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &p[i]);
sort(p + 1 , p + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
if(p[i] <= m)
cl = i;
if(!cr && p[i] > m)
cr = i;
}
memset(f , 0x3f , sizeof(f));
memset(g , 0x3f , sizeof(g));
if(cl) f[cl][1] = g[cl][1] = n * (m - p[cl]);
if(cr) f[cr][1] = g[cr][1] = n * (p[cr] - m);
for(k = 2 ; k <= n ; k ++ )
{
for(i = 1 ; i + k - 1 <= n ; i ++ )
{
j = i + k - 1;
f[i][k & 1] = min(f[i + 1][~k & 1] + (n - k + 1) * (p[i + 1] - p[i]) , g[i + 1][~k & 1] + (n - k + 1) * (p[j] - p[i]));
g[i][k & 1] = min(g[i][~k & 1] + (n - k + 1) * (p[j] - p[j - 1]) , f[i][~k & 1] + (n - k + 1) * (p[j] - p[i]));
}
}
printf("%lld\n" , min(f[1][n & 1] , g[1][n & 1]));
return 0;
}

【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp的更多相关文章

  1. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  2. BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草

    数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值. 好题!看起来水水的实际易错! 显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中 ...

  3. BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )

    dp... dp( l , r , k )  , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...

  4. [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742

    分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...

  5. bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】

    挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...

  6. BZOJ1742[Usaco2005 nov]Grazing on the Run

    Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...

  7. 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)

    传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...

  8. [USACO2005 nov] Grazing on the Run【区间Dp】

    Online Judge:bzoj1742,bzoj1694 Label:区间Dp 题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我 ...

  9. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

随机推荐

  1. 20145209 2016-2017-2 《Java程序设计》第3周学习总结

    20145209 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 1.构造方法决定类生成对象的方式 用this将已存在的参数的值指定给此参数. 用new建立新 ...

  2. 全国Uber优步司机奖励政策 (1月11日-1月17日)

    本周已经公开奖励整的城市有:北 京.成 都.重 庆.上 海.深 圳.长 沙.佛 山.广 州.苏 州.杭 州.南 京.宁 波.青 岛.天 津.西 安.武 汉.厦 门,可按CTRL+F,搜城市名快速查找. ...

  3. 说说NSCache优于NSDictionary的几点

    1.NSCache可以提供自动删减缓存功能,而且保证线程安全,与字典不同,不会拷贝键.2.NSCache可以设置缓存上限,限制对象个数和总缓存开销.定义了删除缓存对象的时机.这个机制只对NSCache ...

  4. hugepages_settings.sh

    #!/bin/bash## hugepages_settings.sh## Linux bash script to compute values for the# recommended HugeP ...

  5. textview的阴影线

    android:shadowColor="#000000" android:shadowDx="1" android:shadowDy="1" ...

  6. VIN码识别:让VIN码采集so easy!

    近几年汽车后市场呈喷井式发展,在过去的半年,汽车后市场规模已高达万亿级,产业前景广阔,与此同时行业运营也受信息区域化.数据不统一的制约,让企业面临着效率低下.规模化运行困难的痛点. 在汽车配件市场中, ...

  7. Fiddler使用总结(一)

    Fiddler基础知识 .Fiddler是强大的抓包工具,它的原理是以web代理服务器的形式进行工作的,使用的代理地址是:127.0.0.1,端口默认为8888,我们也可以通过设置进行修改. .代理就 ...

  8. Siki_Unity_2-1_API常用方法和类详细讲解(下)

    Unity 2-1 API常用方法和类详细讲解(下) 任务101&102:射线检测 射线origin + direction:射线检测:射线是否碰撞到物体 (物体需要有碰撞器),碰撞物体的信息 ...

  9. win 下通过dos命令格式化磁盘

    该命令可以解决好多问题,比如: 1.u盘作为启动后,如何恢复成正常的u盘 1.win + r ->cmd 进入dos模式 2.输入diskpart后回车,点击确定,进入diskpart命令的交互 ...

  10. 微信小程序入门学习之事件 事件对象 冒泡非冒泡事件(1)

    这关于事件的学习,可以自己复制到微信开发者工具上自己运行试试. 首先这里有两个文件.js 和.wxml 文件 首先给出.js文件下代码 // pages/news/news.js Page({ /** ...