cogs1667[SGU422]傻叉小明打字
其实和CF498bName that Tune差不多
题意:
现在需要依次输入n个字符,第i个字符输入的时候有pi的概率输错,不论是第几次输入(0<=pi<=0.5).每输入一个字符的用时为1.任意时刻都可以花费t的时间检查之前输入的字符有无错误(不论检查多少个字符,t的数值都是一样的),如果有错误就需要一次一次删除字符直到所有错误字符都被删除(只能从最后面往前删,如果第i个位置出错,那么第i个位置之后的所有字符无论对不对都必须被删除).如果采取最优策略,问将全部字符正确输入的期望时间.
分析:这里我们输入字符之后还必须通过检查确保输入的字符是正确的,那么在状态定义的时候就要体现这一点.如果定义f[i]为输入前i个字符并确保前i个字符正确的期望时间,将不容易转移.概率期望的题常常采用”逆序定义状态”,那么这道题中就定义f[i]为已经输入前n-i个字符并确保前n-i个字符正确时,再输入剩下的i个字符并确保它们正确所需的最优策略下期望时间.注意这里定义的是”最后i个字符的期望用时”而不是”前i个字符的期望用时”.显然,如果当前已经确保前n-i个字符正确,之后前n-i个字符就不会再发生变化了,如果后面的字符出错我们不需要删除已经确定正确的字符.
接下来考虑如何转移.我们进行的操作序列一定是:打几个字符,检查一次并进行必要的删除,打几个字符,检查一次并进行必要的删除,打几个字符检查一次并进行必要的删除.那么我们可以进行的决策就是下一次检查之前打多少个字符:是打1个字符再检查一次,还是打2个字符再检查一次.于是我们想到枚举下一次检查之前打的字符个数x.影响我们下一步行动的只有第一个错误出现的位置,那么当下一步打x个字符时(x<=i), f[i]=p(第一个错误出现在第1个字符)*(x+t+x+f[i])+p(第一个错误出现在第2个字符)*(x+t+x-1+f[i-1])+…+p(第一个错误出现在第x个字符)*(x+t+1+f[i-x+1])+p(不出现错误)*(x+t+f[i-x])
将式子右边的f[i]移项,就可以DP了.
注意即使不出现错误,我们也是在花费t的时间检查之后才能确保没有出现错误.
边界显然是f[0]=0
枚举f[i]对应的所有x值时,可以处理一下”第一个错误出现在第j个字符的概率”,注意一个细节:”打j个字符且没有出错”和”打j+1个字符且第一个错误出现在第j+1个字符”的概率是不同的.那么我们得到了一个O(n^3)的DP,但这样是不能通过的,需要优化.
仔细观察刚才得到的式子:
f[i]=p(第一个错误出现在第1个字符)*(x+t+x+f[i])+p(第一个错误出现在第2个字符)*(x+t+x-1+f[i-1])+…+p(第一个错误出现在第x个字符)*(x+t+1+f[i-x+1])+p(不出现错误)*(x+t+f[i-x])
我们发现,p(第一个错误出现在第1个字符)对于x=1,2,3…是相同的,p(第一个错误出现在第2个字符)对于x=2,3…是相同的,这暗示我们O(n^3)的做法中有大量可以省去的重复计算.
如果打x+1个字符再进行检查,则
f[i]=p(第一个错误出现在第1个字符)*(x+1+t+x+1+f[i])+p(第一个错误出现在第2个字符)*(x+1+t+x+f[i-1])+…+p(第一个错误出现在第x个字符)*(x+1+t+2+f[i-x+1])+p(第一个错误出现在第x+1个字符)*(x+1+t+1+f[i-x])+p(不出现错误)*(x+t+f[i-x-1])
//这式子鬼知道打没打错…
然后我们发现打x字符和打x+1个字符之间的变化是可以O(1)算出来的,那么我们就可以对每个i选择最优的x,O(n^2)从f[0]推到f[n]了…
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
double f[maxn],p[maxn],P[maxn];
int main(){
freopen("sb_xiaoming.in","r",stdin);
freopen("sb_xiaoming.out","w",stdout);
int n,t;scanf("%d%d",&n,&t);
for(int i=;i<=n;++i)scanf("%lf",p+i);
f[]=;
for(int i=;i<=n;++i){
P[]=;f[i]=1e30;
for(int j=;j<=i;++j)P[j]=P[j-]*(-p[n-i+j]);
double tmp1=P[]*f[i-],tmp2=-P[];
for(int j=;j<=i;++j){
f[i]=min(f[i],(tmp1+j+t+tmp2)/P[]);
tmp1+=P[j+]*f[i-j-];tmp1-=P[j+]*f[i-j];tmp2+=-P[j+];
}
}
printf("%.6f\n",f[n]);
fclose(stdin);fclose(stdout);
return ;
}
cogs1667[SGU422]傻叉小明打字的更多相关文章
- HDU 3791 二叉搜索树 (数据结构与算法实验题 10.2 小明) BST
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3791 中文题不说题意. 建立完二叉搜索树后进行前序遍历或者后序遍历判断是否一样就可以了. 跟这次的作业第 ...
- hdu 4506 小明系列故事——师兄帮帮忙【幂取模乱搞】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=4506 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- 小明的密码-初级DP解法
#include #include #include using namespace std; int visited[5][20][9009];// 访问情况 int dp[5][20][9009] ...
- 小明系列问题――小明序列(LIS)
小明系列问题――小明序列 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit ...
- ACM 擅长排列的小明
擅长排列的小明 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 小明十分聪明,而且十分擅长排列计算.比如给小明一个数字5,他能立刻给出1-5按字典序的全排列,如果你想 ...
- ACM 懒省事的小明
懒省事的小明 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 小明很想吃果子,正好果园果子熟了.在果园里,小明已经将所有的果子打了下来,而且按果子的不同种 ...
- 管闲事的小明-nyoj51
描述某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L,都种有一棵 ...
- HDU2096 小明A+B
入门级都没到的水题!看到顺便就做了,AC记录喜+1 Description 小明今年3岁了, 现在他已经能够认识100以内的非负整数, 并且能够进行100以内的非负整数的加法计算. 对于大于等于100 ...
- 小明A+B[HDU2096]
小明A+B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
随机推荐
- BZOJ1003_物流运输_KEY
题目传送门 这是一道DP+最短路径的好题. 首先预处理每天每个点的最短路径. 用SPFA进行处理.即cost[i][j]为第i天到底j天的1到M点的最小花费. 就可以水水的DP. 设f[i]为第i天的 ...
- CC3200使用MQTT的SSL加密证书可用日期修改
1. 在使用CC3200进行SSL加密的时候,需要证书,但是证书有一个截止日期,如果当前CC3200没有设置这个日期,那么证书通信会失败,需要添加代码 int setDeviceTime() { Sl ...
- apache和IIS共存,服务器对外统一使用80端口
apache和IIS共用80端口为了PHP与ASP各自的执行效率,要在服务器上安装iis与Apache,但是无法同时使用80端口,否则其中必定有一个启动不了.让它们共存的并且访问网站不需要加端口号,解 ...
- 模拟实现MyBatis中通过SQL反射实体类对象功能
话不多说,直接上干货! package cn.test; import java.lang.reflect.Method; import java.sql.Connection; import jav ...
- hdu1869六度分离(floyd)
六度分离 Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- [转]JS私有化的实现——稳妥构造函数
所谓稳妥对象, 指的是没有公共属性, 而且其方法也不引用this的对象.稳妥对象函数遵循与寄生构造函数类似的模式, 但有两点不同: 一是新创建对象的实例方法不引用this: 二是不使用new操作符调用 ...
- Java开发工程师(Web方向) - 02.Servlet技术 - 第3章.Servlet应用
第3章.Servlet应用 转发与重定向 转发:浏览器发送资源请求到ServletA后,ServletA传递请求给ServletB,ServletB生成响应后返回给浏览器. 请求转发:forward: ...
- 一句话描述 Java 设计模式
Java 设计模式 设计模式是对应于不同的应用目的的. 适配:将特定功能接口适配需求方 桥接:面向两个接口,无关接口的实现: 抽象化与实现化解耦,使得二者可以独立变化:例:笔与图形,笔可以画图 ...
- win7下本地运行spark以及spark.sql.warehouse.dir设置
SparkSession spark = SparkSession .builder() .master("local[*]") .enableHiveSupport() .con ...
- 在使用Pipeline串联多个stage时model和非model的区别
train.csv数据: id,name,age,sex1,lyy,20,F2,rdd,20,M3,nyc,18,M4,mzy,10,M 数据读取: SparkSession spark = Spar ...