先缩点,对于缩完点后的DAG,可以直接在每个scc dfs一次就可以求出终点是这个scc的点的点对个数。

  1. # include <cstdio>
  2. # include <cstring>
  3. # include <cstdlib>
  4. # include <iostream>
  5. # include <vector>
  6. # include <queue>
  7. # include <stack>
  8. # include <map>
  9. # include <set>
  10. # include <cmath>
  11. # include <algorithm>
  12. using namespace std;
  13. # define lowbit(x) ((x)&(-x))
  14. # define pi 3.1415926535
  15. # define eps 1e-
  16. # define MOD
  17. # define INF
  18. # define mem(a,b) memset(a,b,sizeof(a))
  19. # define FOR(i,a,n) for(int i=a; i<=n; ++i)
  20. # define FO(i,a,n) for(int i=a; i<n; ++i)
  21. # define bug puts("H");
  22. # define lch p<<,l,mid
  23. # define rch p<<|,mid+,r
  24. # define mp make_pair
  25. # define pb push_back
  26. typedef pair<int,int> PII;
  27. typedef vector<int> VI;
  28. # pragma comment(linker, "/STACK:1024000000,1024000000")
  29. typedef long long LL;
  30. int Scan() {
  31. int res=, flag=;
  32. char ch;
  33. if((ch=getchar())=='-') flag=;
  34. else if(ch>=''&&ch<='') res=ch-'';
  35. while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
  36. return flag?-res:res;
  37. }
  38. void Out(int a) {
  39. if(a<) {putchar('-'); a=-a;}
  40. if(a>=) Out(a/);
  41. putchar(a%+'');
  42. }
  43. const int N=;
  44. //Code begin...
  45.  
  46. struct Edge{int p, next;}edge[N*N*];
  47. int head[N], cnt=;
  48. char s[N][N];
  49. int G[N][N], n;
  50. int Low[N], DFN[N], Stack[N], Belong[N], Index, top, scc, num[N];
  51. bool Instack[N], vis[N][N], mark[N];
  52. LL siz[N];
  53.  
  54. void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
  55. void Tarjan(int u){
  56. Low[u]=DFN[u]=++Index; Stack[top++]=u; Instack[u]=true;
  57. FOR(v,,n) {
  58. if (!G[u][v]) continue;
  59. if (!DFN[v]) {
  60. Tarjan(v);
  61. if (Low[u]>Low[v]) Low[u]=Low[v];
  62. }
  63. else if (Instack[v]&&Low[u]>DFN[v]) Low[u]=DFN[v];
  64. }
  65. int v;
  66. if (Low[u]==DFN[u]) {
  67. scc++;
  68. do{
  69. v=Stack[--top]; Instack[v]=false;
  70. Belong[v]=scc; num[scc]++;
  71. }while (v!=u);
  72. }
  73. }
  74. void solve(int nn){
  75. mem(DFN,); mem(Instack,); mem(num,);
  76. Index=scc=top=;
  77. FOR(i,,nn) if (!DFN[i]) Tarjan(i);
  78. }
  79. void dfs(int x, int fa){
  80. siz[x]+=num[x]*num[fa];
  81. mark[x]=;
  82. for (int i=head[x]; i; i=edge[i].next) {
  83. int v=edge[i].p;
  84. if (mark[v]) continue;
  85. dfs(v,fa);
  86. }
  87. }
  88. int main ()
  89. {
  90. LL ans=;
  91. scanf("%d",&n);
  92. FOR(i,,n) scanf("%s",s[i]+);
  93. FOR(i,,n) FOR(j,,n) G[i][j]=s[i][j]-'';
  94. solve(n);
  95. FOR(i,,n) FOR(j,,n) {
  96. if (!G[i][j]) continue;
  97. int u=Belong[i], v=Belong[j];
  98. if (u==v||vis[u][v]) continue;
  99. add_edge(u,v); vis[u][v]=true;
  100. }
  101. FOR(i,,scc) mem(mark,), dfs(i,i);
  102. FOR(i,,scc) ans+=siz[i];
  103. printf("%lld\n",ans);
  104. return ;
  105. }

BZOJ 2208 连通数(强连通分量)的更多相关文章

  1. [BZOJ 2208] 连通数

    Link: BZOJ 2208 连通数 Solution: 传递闭包模板题 传递闭包是集合中最小的二元关系,其实就是对二元关系的不断拓展,一般用$floyd$求解 这里要先跑一遍$tarjan$求出$ ...

  2. BZOJ 1179 Atm(强连通分量缩点+DP)

    题目说可以通过一条边多次,且点权是非负的,所以如果走到图中的一个强连通分量,那么一定可以拿完这个强连通分量上的money. 所以缩点已经很明显了.缩完点之后图就是一个DAG,对于DAG可以用DP来求出 ...

  3. bzoj 1051 tarjan强连通分量

    2013-11-16 11:39 原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1051 强连通分量,缩完点之后看出度为0的强连通分量有几个 ...

  4. [JSOI2010] 连通数 - 强连通分量,缩点

    复习一下手工 tarjan #include <bits/stdc++.h> using namespace std; vector <int> g[2005],scc[200 ...

  5. BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset

    BZOJ_2208_[Jsoi2010]连通数_强连通分量+拓扑排序+手写bitset Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i ...

  6. BZOJ 1179 [Apio2009]Atm(强连通分量)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1179 [题目大意] 给出一张有向带环点权图,给出一些终点,在路径中同一个点的点权只能累 ...

  7. BZOJ 1924 所驼门王的宝藏(强连通分量缩点+DAG最长链)

    思路不是很难,因为宝藏只会在给出的n个点内有,于是只需要在这n个点里面连边,一个点如果能到达另一个点则连一条有向边, 这样用强连通分量缩点后答案就是DAG的最长链. 问题在于暴力建图是O(n^2)的, ...

  8. bzoj 1051 强连通分量

    反建图,计算强连通分量,将每个分量看成一个点,缩点后的图是一个DAG,如果是一棵树,则根代表的连通分量的大小就是答案,否则答案为0. 收获: 图的东西如果不好解决,可以尝试缩点(有向图将每个强连通分量 ...

  9. BZOJ 1051:[HAOI2006]受欢迎的牛(强连通分量)

    受欢迎的牛Description每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么 ...

随机推荐

  1. C# 面试题 (二)

    1. 什么是C#? C#是微软公司发布的一种面向对象的.运行于.NET Framework之上的高级程序设计语言.C#是一种安全的.稳定的.简单的.优雅的,由C和C++衍生出来的面向对象的编程语言. ...

  2. 南京Uber优步司机奖励政策(12月14日到12月20日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. spl_autoload_register()函数

    一.__autoload 这是一个自动加载函数,在PHP5中,当我们实例化一个未定义的类时,就会触发此函数.看下面例子: printit.class.php <?php class PRINTI ...

  4. sqlserver 循环赋值变量

    sql server 是可以用 @变量 +=值的: 第一:必须在循环里面, 第二: 必须在循环外面初始化变量的值 如:  @变量=''; 这样才能循环给值

  5. 修改Eclipse中项目在Apache Tomcat中的部署路径

    在Eclipse中配项目已经部署到如下默认目录下:eclipse workspace/.metadata/.plugins/org.eclipse.core.resources/.projects. ...

  6. 「日常训练」Jin Yong’s Wukong Ranking List(HihoCoder-1870)

    题意与分析 2018ICPC北京站A题. 题意是这样的,给定若干人的武力值大小(A B的意思是A比B厉害),问到第几行会出现矛盾. 这题不能出现思维定势,看到矛盾就是矛盾并查集--A>B.A&g ...

  7. 文件包含漏洞(RFI)

    1文件包含漏洞简介 include  require  include_once   require_once RFI综述 RFI是Remote File Inclusion的英文缩写,直译过来就是远 ...

  8. 小组ITalk网站开发中使用到的一些技巧

    ----->Display属性和Visibility属性:一个清除内容和框体,另一个只清除内容而保留窗体: $('#abc').css({ 'font-size' : '12px', '-web ...

  9. vs_code 快捷键

    一般的Ctrl+Shift+P,F1显示命令面板按Ctrl+P快速打开,到文件.Ctrl + Shift + N新窗口/实例Ctrl + Shift + W /关闭窗口实例Ctrl +.用户设置Ctr ...

  10. 剑指offer-二叉树中和为某一值的路径24

    题目描述 输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径.(注意: 在返回值的list中,数组长度大 ...