GCD 莫比乌斯反演 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.
/**
题目:GCD
链接:https://vjudge.net/contest/178455#problem/E
题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对. 1<=N<=10^7 思路:
定义:
f(n)表示gcd(x,y)==n的对数。
F(n)表示n|gcd(x,y)的对数。 枚举n以内的素数p; f(p) = sigma(mu[d/p]*F(d)) (p|d) F(d) = (n/d)*(n/d); N/10*sqrt(N)复杂度。 */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int, int> P;
const LL INF = 1e10;
const int mod = 1e9 + ;
const int maxn = 1e7 + ;
int prime[maxn], tot, not_prime[maxn];
int mu[maxn], sum[maxn];
void init()
{
mu[] = ;
tot = ;
for(int i = ; i < maxn; i++){
if(!not_prime[i]){
prime[++tot] = i;
mu[i] = -;
}
for(int j = ; prime[j]*i<maxn; j++){
not_prime[prime[j]*i] = ;
if(i%prime[j]==){
mu[prime[j]*i] = ;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
for(int i = ; i < maxn; i++) sum[i] = sum[i-]+mu[i];
}
LL solve(int n)///x在[1,n], y在[1,n],z在[1,n] gcd(x,y,z)=1的对数。
{
LL ans = ;
int last;
for(int i = ; i <= n; i=last+){
last = n/(n/i);
ans += (LL)(sum[last]-sum[i-])*(n/i)*(n/i);
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
int n;
init();
while(scanf("%d",&n)==)
{
LL ans = ;
for(int i = ; i <= tot&&prime[i]<=n; i++){
ans += solve(n/prime[i]);
//cout<<"prime = "<<prime[i]<<endl;
//cout<<"ans = "<<ans<<endl;
}
printf("%lld\n",ans);
}
return ;
}
GCD 莫比乌斯反演 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.的更多相关文章
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- Bzoj 2818: Gcd(莫比乌斯反演)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对 ...
- luogu2658 GCD(莫比乌斯反演/欧拉函数)
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...
随机推荐
- 实现淡入淡出效果的组件,继承自JComponent
由于仅贴出代码,供有缘人参考. import java.awt.AlphaComposite; import java.awt.Graphics; import java.awt.Graphics2D ...
- Windows下Android开发环境配置
最新更新,见我新博客http://www.hrwhisper.me/java-android-environment-genymotion-emulator/ 更新了使用使用genymotion神级模 ...
- has been modified since the precompiled header地图错误
添加高德地图的一个错误 has been modified since the precompiled header 解决方案: xcode---product----clean 清理重新编译一下就 ...
- 算法笔记_070:BellmanFord算法简单介绍(Java)
目录 1 问题描述 2 解决方案 2.1 具体编码 1 问题描述 何为BellmanFord算法? BellmanFord算法功能:给定一个加权连通图,选取一个顶点,称为起点,求取起点到其它所有顶 ...
- C#开发Unity游戏教程循环遍历做出推断及Unity游戏演示样例
C#开发Unity游戏教程循环遍历做出推断及Unity游戏演示样例 Unity中循环遍历每一个数据,并做出推断 非常多时候.游戏在玩家做出推断以后.游戏程序会遍历玩家身上大量的所需数据,然后做出推断. ...
- logback 配置解析
http://www.cnblogs.com/cb0327/p/5759441.html 正文 回到顶部 1.根节点<configuration>包含的属性 scan: 当此属性设置为tr ...
- JBoss环境搭建及部署Web项目
http://blog.csdn.net/pop303/article/details/7210290 赶在年前学习了一下JBOSS,之前觉得JBOSS相关资料会有很多,不过现在发现很少,在亚马逊出也 ...
- 升级macOS Sierra系统 导致错误 app: resource fork, Finder information, or similar detritus not allowed
前几天刚升级了macOS Sierra系统,顿时感觉入坑了,本来好好的项目报如下错误: app: resource fork, Finder information, or similar detri ...
- 每天进步一点点——Ganglia的Python扩展模块开发
转载请说明出处:http://blog.csdn.net/cywosp/article/details/39701245 注:本文涉及到的代码都在centos 6.5 64bit系统上通过验证,Gan ...
- openstack neutron L3 HA
作者:Liping Mao 发表于:2014-08-20 版权声明:能够随意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 近期Assaf Muller写了一篇关于Neutro ...