Divide Two Integers——二分法的经典变形
Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT.
这道题属于数值处理的题目,对于整数处理的问题,比较重要的注意点在于符号和处理越界的问题。对于这道题目,因为不能用乘除法和取余运算,我们只能使用位运算和加减法。比较直接的方法是用被除数一直减去除数,直到为0。这种方法的迭代次数是结果的大小,即比如结果为n,算法复杂度是O(n)。 直接用除数去一个一个加,直到被除数被超过的话,会超时。
那么有没有办法优化呢? 这个我们就得使用位运算。我们知道任何一个整数可以表示成以2的幂为底的一组基的线性组合,即 num=a_0*2^0+a_1*2^1+a_2*2^2+...+a_n*2^n。基于以上这个公式以及左移一位相当于乘以2,我们先让除数左移直到大 于被除数之前得到一个最大的基。然后接下来我们每次尝试减去这个基,如果可以则结果增加加2^k,然后基继续右移迭代,直到基为0为止。因为这个方法的迭 代次数是按2的幂知道超过结果,所以时间复杂度为O(logn)。代码如下:
解决办法每次将被除数增加1倍,同时将count也增加一倍,如果超过了被除数,那么用被除数减去当前和再继续本操作。
class Solution {
public:
int divide(int dividend, int divisor) { if (dividend == INT_MIN && divisor == -)
return INT_MAX;
if (dividend == || divisor == )
return ; int nega = ;
if ((dividend>&&divisor<) || (dividend<&&divisor>))
nega = ;
long long d=dividend;//int数据abs(-2147483648)会溢出,因为正数int只能到2147483647,所以需要long long 来存储一下
long long s=divisor;
long long den = abs(d);
long long sor = abs(s);
if (sor > den)
return ;
long long sum = ;
int count = ;
int res = ;
while (den >= sor)
{
count = ; //a >= b保证了最少有一个count
sum = sor;
while (sum + sum <= den){ //!!
sum += sum;
count += count;
}
den -= sum;
res += count;
} if (nega)
res = - res;
return res;
}
};
这种数值处理的题目在面试中还是比较常见的,类似的题目有 Sqrt(x) , Pow(x, n) 等。上述方法在其他整数处理的题目中也可以用到,大家尽量熟悉实现这些问题。
Divide Two Integers——二分法的经典变形的更多相关文章
- [LeetCode] Divide Two Integers( bit + 二分法 )
Divide two integers without using multiplication, division and mod operator. 常常出现大的负数,无法用abs()转换成正数的 ...
- LeetCode第[29]题(Java):Divide Two Integers
题目:两整数相除 难度:Medium 题目内容: Given two integers dividend and divisor, divide two integers without using ...
- Divide Two Integers(模拟计算机除法)
Divide two integers without using multiplication, division and mod operator. 由于不能用乘号,除号,和取余.那么一个数除另外 ...
- [LeetCode] Divide Two Integers 两数相除
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- Leetcode Divide Two Integers
Divide two integers without using multiplication, division and mod operator. 不用乘.除.求余操作,返回两整数相除的结果,结 ...
- leetcode-【中等题】Divide Two Integers
题目 Divide two integers without using multiplication, division and mod operator. If it is overflow, r ...
- [LintCode] Divide Two Integers 两数相除
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- 62. Divide Two Integers
Divide Two Integers Divide two integers without using multiplication, division and mod operator. 思路: ...
- Divide Two Integers leetcode
题目:Divide Two Integers Divide two integers without using multiplication, division and mod operator. ...
随机推荐
- YBT 5.3 数位动态规划
记忆化搜索的专题 题解在代码中 Amount of Degrees[loj 10163] /* 此题可以转换成将10进制转成b进制后有k个1其他都为0的个数 所以用记忆化dfs dp[pos][sum ...
- Android源码4.4.4_r1下载和编译
系统:ubuntu 16.04.2 TLS 1.源码下载: sudo apt-get install curl curl https://storage.googleapis.com/git-repo ...
- Hadoop,大数据,云计算三者之间的关系
大数据和云计算是何关系?关于大数据和云计算的关系人们通常会有误解.而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理.大数据.hadoop及云计 ...
- 《时间序列分析及应用:R语言》读书笔记--第二章 基本概念
本章介绍时间序列中的基本概念.特别地,介绍随机过程.均值.方差.协方差函数.平稳过程和自相关函数等概念. 2.1时间序列与随机过程 关于随机过程的定义,本科上过相关课程,用的是<应用随机过程&g ...
- github上面创建文件夹
- C# 后台获取请求来源、文件下载
文件流下载文件 void BigFileDownload() { try { string FileName = "测试.docx"; string filePath = Page ...
- 【Android】完善Android学习(四:API 3.1)
备注:之前Android入门学习的书籍使用的是杨丰盛的<Android应用开发揭秘>,这本书是基于Android 2.2API的,目前Android已经到4.4了,更新了很多的API,也增 ...
- PHP扩展--Yaf框架安装
安装/配置 编译安装 wge thttp://pecl.php.net/get/yaf-2.3.5.tgz tar -zxvfyaf-2.3.5.tgz cd yaf-2.3.5/ cd extens ...
- MySQL和Postgresql的区别
一.PostgreSQL相对于MySQL的优势 1.在SQL的标准实现上要比MySQL完善,而且功能实现比较严谨:2.存储过程的功能支持要比MySQL好,具备本地缓存执行计划的能力:3.对表连接支持较 ...
- 「6月雅礼集训 2017 Day4」寻找天哥
[题目大意] 给出$n$个三维向量,设当前向量长度为$L$,每次沿着向量等概率走$[0,L]$个长度.一个球每秒半径增加1个长度,直到覆盖位置,每秒耗能为球体积,求总耗能的期望. 设最后半径为R,那么 ...