Leetcode 295. 数据流的中位数
1.题目要求
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
- void addNum(int num) - 从数据流中添加一个整数到数据结构中。
- double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:
- 如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
- 如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
2.解题思路
堆是一个非常重要的数据结构,堆排序在C++中的实现为优先级队列(Priority_queue),关于这一点,我的另一篇博文 "Leetcode 703. 数据流中的第K大元素" 有更详细提到,这里不做重复。
LeetCode网站把这一道划分在“堆”一类中,也是提醒我们使用堆结构。这道题很巧妙,我是听了算法课(牛客网的左程云大牛)的讲解才弄明白。这里的代码是自己听懂了思路,独立写出来的。
关键思路:建立两个堆(使用priority_queue实现),一个大根堆,一个小根堆。
(1)一个大根堆,保存所有整数中较小的1/2;一个小根堆,保存所有整数中较大的1/2;
(2)并且,依次添加元素过程中,两个堆元素个数的差的绝对值不能超过1;
这样,两个堆建立好了以后,
(1)如果输入的元素个数 n 是偶数,则两个堆的元素个数相等,分别取大根堆的顶和小根堆的顶,取平均值,即是所求的整个数据流的中位数;
(2)如果输入的元素个数 n 是奇数,则必有一个堆的元素个数为(n/2+1),返回这个堆的顶,即为所求的中位数。
3.我的代码
个人比较喜欢写段落注释和行注释,因为这样自己一年之后还能快速看懂,当然也方便他人,特别是一起刷题的伙伴,轻松看懂。
更多的细节讲解里都在注释里。如有错误的地方,欢迎多指正。
代码通过所有测试案例的时间为124ms。
class MedianFinder {
public:
/** initialize your data structure here. */
MedianFinder() { } void addNum(int num) {
/*建立两个堆:(1)一个大根堆,保存所有整数中较小的1/2;一个小根堆,保存所有整数中较大的1/2;
(2)并且,依次添加元素过程中,两个堆大小的差的绝对值不能超过1; */ //第一元素加入大根堆
if(heap1.size()==){
heap1.push(num);
return;
} if(num<=heap1.top()){
//第二个元素比大根堆的顶小
heap1.push(num); //大根堆元素过多
if(heap1.size()-heap2.size()>)
{
int temp = heap1.top();
heap1.pop();
heap2.push(temp);//大根堆弹出顶到小根堆
} }
else{
//第二个元素比大根堆的顶大,直接进入小根堆
heap2.push(num); //小根堆元素过多
if(heap2.size()-heap1.size()>)
{
int temp = heap2.top();
heap2.pop();
heap1.push(temp);//小根堆弹出顶到大根堆
}
} } double findMedian() {
//输入的元素为奇数个
if(heap1.size() > heap2.size())
return heap1.top();
else if(heap1.size() < heap2.size())
return heap2.top(); //输入的元素个数为偶数
else
return (heap1.top()+heap2.top())/2.0;
//取大根堆、小根堆的堆顶元素取平均值,即为所求全局中位数
} private:
priority_queue<int> heap1;//默认,大根堆
priority_queue<int,vector<int>,greater<int>> heap2;//小根堆(升序序列) }; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
4.用时更少的示例代码
这是我提交解答后,查看细节,看到的Leetcode官网上提交的关于这道题运行时间最短(96ms)的示例代码。
LeetCode上刷好多速度排名第一的代码中都有一段类似的代码,就是下面代码中的第一段代码——优化C++的IO速度。
/*一般地,C++的运行速度不如C的,主要原因是C++的输入输出流兼容了C的输入输出,因此,C++的速度才会变慢,
如果去掉C++的输入输出的兼容性的话,速度就和C的差不多了*/
static const auto __ = []() {
// turn off sync
std::ios::sync_with_stdio(false);
// untie in/out streams
std::cin.tie(nullptr);
return nullptr;
}(); class MedianFinder {
public:
/** initialize your data structure here. */ //使用vector实现两个堆,而不是priority_queue
vector<int> maxheap;
vector<int> minheap; bool flag = true; MedianFinder() {
} void addNum(int num) {
if(flag){
//构建小根堆
if(minheap.size()>&&num>minheap[]){
minheap.push_back(num);
push_heap(minheap.begin(),minheap.end(),greater<int>());
num = minheap[];
pop_heap(minheap.begin(),minheap.end(),greater<int>());
minheap.pop_back();
}
maxheap.push_back(num);
push_heap(maxheap.begin(),maxheap.end(),less<int>());
flag=false;
}else{
//构建大根堆
if(maxheap.size()>&&num<maxheap[]){
maxheap.push_back(num);
push_heap(maxheap.begin(),maxheap.end(),less<int>());
num = maxheap[];
pop_heap(maxheap.begin(),maxheap.end(),less<int>());
maxheap.pop_back();
}
minheap.push_back(num);
push_heap(minheap.begin(),minheap.end(),greater<int>());
flag=true;
}
} double findMedian() {
if(maxheap.size()<&&minheap.size()<)
return ;
if(flag){
return (maxheap[]+minheap[])/2.0;
}else{
return maxheap[];
}
}
}; /**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/
参考博客:
https://blog.csdn.net/xiaosshhaa/article/details/78136032 std::ios::sync_with_stdio(false); cin.tie(0);
Leetcode 295. 数据流的中位数的更多相关文章
- Java实现 LeetCode 295 数据流的中位数
295. 数据流的中位数 中位数是有序列表中间的数.如果列表长度是偶数,中位数则是中间两个数的平均值. 例如, [2,3,4] 的中位数是 3 [2,3] 的中位数是 (2 + 3) / 2 = 2. ...
- [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- LeetCode——295. Find Median from Data Stream
一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...
- 堆实战(动态数据流求top k大元素,动态数据流求中位数)
动态数据集合中求top k大元素 第1大,第2大 ...第k大 k是这群体里最小的 所以要建立个小顶堆 只需要维护一个大小为k的小顶堆 即可 当来的元素(newCome)> 堆顶元素(small ...
- [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)
295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...
- [leetcode]295. Find Median from Data Stream数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- 295 Find Median from Data Stream 数据流的中位数
中位数是排序后列表的中间值.如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值.示例:[2,3,4] , 中位数是 3[2,3], 中位数是 (2 + 3) / 2 = 2.5设计一个 ...
- [Swift]LeetCode295. 数据流的中位数 | Find Median from Data Stream
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
随机推荐
- 在mesh client示例中加入spi_slave接口(without IDE)
在mesh client示例中加入spi_slave接口(without IDE) 主要是理解cmake构建的过程,然后修改工程中的inlcude路径及c源文件. 1. 解压mesh_sdk unzi ...
- HDU 4300 Clairewd’s message (next函数的应用)
题意:给你一个明文对密文的字母表,在给你一段截获信息,截获信息前半段是密文,后半段是明文,但不清楚它们的分界点在哪里,密文一定是完整的,明文可能是残缺的,求完整的信息串(即完整的密文+明文串). 题解 ...
- 【转】AMD 的 CommonJS wrapping
其实本文的标题应该是「为什么我不推荐使用 AMD 的 Simplified CommonJS wrapping」,但太长了不好看,为了美观我只能砍掉一截. 它是什么? 为了复用已有的 CommonJS ...
- Scala可变对象
Java提供JavaBean作为数据对象的封装, 而对于Scala来说也提供了同样的支持. class Apple { var weight: Float = _ var color: String ...
- Thunder团队第三周 - Scrum会议5
Scrum会议5 小组名称:Thunder 项目名称:i阅app Scrum Master:苗威 工作照片: 参会成员: 王航:http://www.cnblogs.com/wangh013/ 李传康 ...
- 20145214实验四 Android开发基础
20145214实验四 Android开发基础 实验内容及步骤 安装 JDK 并配置 JDK 环境变量 找到之前path变量中的jdk文件所在位置并复制. 用复制的变量名新建一个 JAVA_HOME ...
- TCP系列09—连接管理—8、TCP Reset
我们在介绍TCP头的时候,提到过其中有个RST标志位.当一个TCP报文中这个标志位打开的时候,我们叫做reset包(严格的说应该叫做reset段,但是很多时候段包帧并不加以区分)或者简单称呼为rese ...
- 【week6】psp
本周psp
- 使用LoadRunner脚本采集Linux性能数据
前面介绍过在LoadRunner的Java协议实现“使用SSH连接Linux”.下面的脚本,是在LoadRunner里连接Linux/Unix远程服务器,收集其磁盘IO的负载到测试结果. 涉及到三个知 ...
- redis——持久化方式RDB与AOF分析
https://blog.csdn.net/u014229282/article/details/81121214 redis两种持久化的方式 RDB持久化可以在指定的时间间隔内生成数据集的时间点快照 ...