http://172.20.6.3/Problem_Show.asp?id=1378
日常懒得看题目怪不得语文差,要好好读题目了,欧拉函数大概是数论里最友好的了,不用解方程不用转换过来转换过去只需要简单乘在一起就可以了。
比较有趣的是求和的部分,因为类似于等比数列的性质,求全部的因数独立值的和竟然只需要快速幂然后最后去掉一个没有用的1(因为这个1是从头到尾没有乘上一个因数的)(具体见代码),非常神奇

代码

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
const int modn=;
long long k;
long long a[maxn]={},b[maxn]={};
long long f[maxn][]={};
long long pow(long long x,long long y){
long long z=;
while(y){
if(y&){z*=x;z%=modn;}
y/=;x*=x;x%=modn;
}
return z;
}
int main(){
scanf("%I64d",&k);
int f1=;
for(int i=;i<=k;i++){
scanf("%I64d%I64d",&a[i],&b[i]);
}
f[][]=;int nex=;
for(int i=;i<=k;i++){
if(a[i]==)continue;
f[i][]=f[nex][]*(a[i]-)+f[nex][];f[i][]%=modn;
f[i][]=f[nex][]*(a[i]-)+f[nex][];f[i][]%=modn;
nex=i;
}long long cnt=;f[k][]-=;
for(int i=;i<=k;i++){
cnt*=pow(a[i],b[i]);cnt%=modn;
}cnt-=;
cnt=(cnt-f[k][]-f[k][]+*modn)%modn;
printf("%I64d\n%I64d\n%I64d\n",f[k][],f[k][],cnt);
return ;
}

JZYZOJ1378 [noi2002]M号机器人 欧拉函数的更多相关文章

  1. bzoj 1408 [Noi2002]Robot(欧拉函数)

    [题目链接]  http://www.lydsy.com/JudgeOnline/problem.php?id=1408 [题意] 求m的所有约数中,满足可以分解成(奇数个不同素数/偶数个不同素数/其 ...

  2. [noi2002]M号机器人

    3030年,Macsy正在火星部署一批机器人.第1秒,他把机器人1号运到了火星,机器人1号可以制造其他的机器人.第2秒,机器人1号造出了第一个机器人——机器人2号.第3秒,机器人1号造出了另一个机器人 ...

  3. hdu 1286:找新朋友(数论,欧拉函数)

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  4. hdu 1286 找新朋友 (欧拉函数)

    Problem Description 新年快到了,"猪头帮协会"准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的 ...

  5. hdoj 1286 找新朋友【欧拉函数】

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. 【欧拉函数】【HDU1286】 找新朋友

    找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  7. 欧拉函数之HDU1286找新朋友

    找新朋友 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submissi ...

  8. 容斥原理、欧拉函数、phi

    容斥原理: 直接摘用百度词条: 也可表示为 设S为有限集, ,则 两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分) 三个集合的容斥关系公式:A∪B∪C = A+B+C - A ...

  9. P2731 骑马修栅栏 欧拉函数

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

随机推荐

  1. bzoj 2165 DP

    首先如果不考虑数据范围的话,因为每一层都是等效的,所以我们可以用w[i][j][k]来表示在某一层的j位置,称作i次电梯到k位置,最多上升多少层,那么我们可以比较容易的写出转移,因为m十分大,i可能与 ...

  2. 阅读关于DuReader:百度大规模的中文机器阅读理解数据集

    很久之前就得到了百度机器阅读理解关于数据集的这篇文章,今天才进行总结!.... 论文地址:https://arxiv.org/abs/1711.05073 自然语言处理是人工智能皇冠上的明珠,而机器阅 ...

  3. Part2-HttpClient官方教程-Chapter7-高级主题(Advanced topics) (HTTP Caching)

    原文链接 7.1 自定义客户端连接 在某些情况下,为了能够处理非标准的.不兼容的行为,可能需要自定义HTTP消息通过网络传输的方式,而不是使用HTTP参数.例如,对于web爬虫,可能有必要迫使Http ...

  4. LeetCode 20 Generate Parentheses

    Given n pairs of parentheses, write a function to generate all combinations of well-formed parenthes ...

  5. 64_j2

    jetty-websocket-server-9.4.3-3.v20170317.fc26.n..> 14-Apr-2017 12:03 62034 jetty-websocket-servle ...

  6. HDU 6183 Color it 线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6183 题意: 有四种操作: 0:清除所有点 1 x y c : 给点(x, y)添加一种颜色c(颜色不 ...

  7. tomcat组成介绍和调优方案

    1.tomcat组成介绍 1.1 目录组成介绍 1.2 启动tomcat中遇到的问题 a.启动过程中出现很多异常:因为端口被占用了 解决方式1:修改Tomcat\conf\server.xml中的默认 ...

  8. 步骤一:下载jdk并安装和配置java环境变量

    1.下载JDk地址: http://download.eclipse.org/oomph/jre/?vm=1_1_7_0_64_0 2.进入下载页面(下载的是jdk7),点击:Oracle JDK1. ...

  9. J2EE MySQL Date数据保持一致解决方案

    1.设置MySQL时区,明确指定 MySQL 数据库的时区,不使用引发误解的 CST show variables like '%time_zone%';set global time_zone = ...

  10. IIS 7浏览网站出错,错误编码 http 503 service unable

    由于重新装了Microsoft Visual Studio 2010,结果运行出错,检查发现应用程序池该项目已停止. 解决办法: 1.打开IIS:开始菜单>运行 2.输入“inetmgr”回车 ...