[SRM686]CyclesNumber
题意:求$n$个数的所有排列形成的轮换个数的$m$次方之和
我以前只知道这是GDKOI的题,今天在ckw博客上发现它是TC题...原题真是哪里都有...
就是求$\sum\limits_{i=1}^n{n\brack i}i^m$
一个引理${n+1\brack m+1}=\sum\limits_k{n\brack k}\binom km$,可以直接用生成函数暴力证
$\begin{aligned}{n+1\brack m+1}=(n+1)![z^{n+1}]\frac{\ln^{m+1}\left(\frac1{1-z}\right)}{(m+1)!}=\frac{n!}{m!}[z^n]\frac1{1-z}\ln^m\left(\frac1{1-z}\right)\end{aligned}$
$\begin{aligned}\sum\limits_k{n\brack k}\binom km&=n![z^n]\sum\limits_k\frac{\ln^k\left(\frac1{1-z}\right)}{k!}\binom km\\&=\frac{n!}{m!}[z^n]\sum\limits_k\frac{\ln^k\left(\frac1{1-z}\right)}{(k-m)!}\\&=\frac{n!}{m!}[z^n]\ln^m\left(\frac1{1-z}\right)\frac1{1-z}\end{aligned}$
然后推式子
$\begin{aligned}\sum\limits_{i=1}^n{n\brack i}i^m&=\sum\limits_{i=1}^n{n\brack i}\sum\limits_{j=1}^m{m\brace j}i^{\underline j}\\&=\sum\limits_{j=1}^m{m\brace j}j!\sum\limits_{i=1}^n{n\brack i}\binom ij\\&=\sum\limits_{j=1}^mj!{m\brace j}{n+1\brack j+1}\end{aligned}$
$O(nm)$预处理第一类斯特林数,$O(m^2)$预处理第二类斯特林数,就可以$O(m)$回答一个询问了
#include<stdio.h> #include<vector> using namespace std; typedef long long ll; const int mod=1000000007; int mul(int a,int b){return a*(ll)b%mod;} int s1[100010][310],s2[310][310],fac[100010]; void pre(int n,int k){ int i,j; fac[0]=1; for(i=1;i<=n;i++)fac[i]=mul(fac[i-1],i); s1[0][0]=1; for(i=1;i<=n+1;i++){ for(j=1;j<=k+1&&j<=i;j++)s1[i][j]=(mul(s1[i-1][j],i-1)+s1[i-1][j-1])%mod; } s2[0][0]=1; for(i=1;i<=k;i++){ for(j=1;j<=i;j++)s2[i][j]=(mul(s2[i-1][j],j)+s2[i-1][j-1])%mod; } } int solve(int n,int k){ if(k==0)return fac[n]; int j,f,s; f=1; s=0; for(j=1;j<=k;j++){ f=mul(f,j); (s+=mul(f,mul(s2[k][j],s1[n+1][j+1])))%=mod; } return s; } class CyclesNumber{ public: vector<int>getExpectation(vector<int>n,vector<int>m){ pre(100000,300); vector<int>res; for(int i=0;i<(int)n.size();i++)res.push_back(solve(n[i],m[i])); return res; } }; /* int main(){ vector<int>a,b; CyclesNumber c; int n,m; scanf("%d%d",&n,&m); a.push_back(n); b.push_back(m); printf("%d",*c.getExpectation(a,b).begin()); } */
[SRM686]CyclesNumber的更多相关文章
- topcoder srm 686 div1
problem1 link 左括号和右括号较少的一种不会大于20.假设左括号少.设$f[i][mask][k]$表示处理了前$i$个字符,其中留下的字符以$k$开头($k=0$表示'(',$k=1$表 ...
随机推荐
- VMware 12安装虚拟机Mac OS X 10.10使用小技巧(虚拟机Mac OS X 10.10时间设置,虚拟机Mac OS X 10.10通过代理上网,Mac OS X 10.10虚拟机优化,VMware虚拟机相互复制)
1:修改Mac OS 系统时间 2:Mac OS系统 通过代理上网 VMware 12安装Mac OS X 10.10虚拟机优化心得 虚拟显卡硬伤,所以必须要优化下才能用,优化的原则就是能精简的精简, ...
- z-index 不起作用
1.第一种情况(z-index无论设置多高都不起作用情况): 这种情况发生的条件有三个: 1.父标签 position属性为relative: 2.问题标签无position属性(不包括static) ...
- 从零开始PHP攻略(001)——Bob的汽车零部件商店
1.创建订单表单 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...
- win10远程桌面配置
Win10连接远程桌面的时候提示您的凭证不工作该怎么办? http://www.cnblogs.com/zhuimengle/p/6048128.html 二.服务器端 1.依旧进入组策略,不过是在服 ...
- yocto 离线编译
使用yocto编译一个软件包时,一般会先在本地寻找下载好的源码包,如果不存在则根据配置从网络下载. 添加本地源码包 为了支持离线编译,添加一个包的配置文件后,需要在本地也准备好源码包. 可以先打开网络 ...
- C++之编译器与链接器工作原理
原文来自:http://blog.sina.com.cn/s/blog_5f8817250100i3oz.html 这里并没不是讨论大学课程中所学的<编译原理>,只是写一些我自己对C++编 ...
- 设计模式之笔记--建造者模式(Builder)
建造者模式(Builder) 定义 建造者模式(Builder),将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 类图 描述 Builder:定义一个建造者抽象类,以规范产 ...
- 创建.dat文件(转载)
比较有用的东比较有用的东西 首先,批处理文件是一个文本文件,这个文件的每一行都是一条DOS命令(大部分时候就好象我们在DOS提示符下执行的命令行一样),你可以使用DOS下的Edit或者Windows的 ...
- Struts2学习笔记03 之 Result组件
二.Result原理 1.stream 2.redirectAction 3.Json
- 看懂sh脚本
1 开头 程序必须以下面的行开始(必须方在文件的第一行): #!/bin/sh 符号#!用来告诉系统它后面的参数是用来执行该文件的程序.在这个例子中我们使用/bin/sh来执行程序. 当编写脚本完成时 ...