HDU 6071 Lazy Running (同余最短路)
Lazy Running
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 101 Accepted Submission(s): 40
Problem Description
In HDU, you have to run along the campus for 24 times, or you will fail in PE. According to the rule, you must keep your speed, and your running distance should not be less thanK meters.
There are 4 checkpoints in the campus, indexed as p1,p2,p3 and p4. Every time you pass a checkpoint, you should swipe your card, then the distance between this checkpoint and the last checkpoint you passed will be added to your total distance.
The system regards these 4 checkpoints as a circle. When you are at checkpoint pi, you can just run to pi−1 or pi+1(p1 is also next to p4). You can run more distance between two adjacent checkpoints, but only the distance saved at the system will be counted.
Checkpoint p2 is the nearest to the dormitory, Little Q always starts and ends running at this checkpoint. Please write a program to help Little Q find the shortest path whose total distance is not less thanK.
Input
The first line of the input contains an integer T(1≤T≤15), denoting the number of test cases.
In each test case, there are 5 integers K,d1,2,d2,3,d3,4,d4,1(1≤K≤1018,1≤d≤30000), denoting the required distance and the distance between every two adjacent checkpoints.
Output
For each test case, print a single line containing an integer, denoting the minimum distance.
Sample Input
2000 600 650 535 380
Sample Output
The best path is 2-1-4-3-2.
Source
2017 Multi-University Training Contest - Team 4
比赛的时候就是蠢……
当时只剩下十几分钟的时候看到这题的……其实很简单的一道最短路,前提是想到了……
题目要求是只有四个点,然后连边成正方形,问从2号点出发,再回到2号点且走过的总距离大于K的最短的路径是多少。对于这个,我们考虑如果存在一条合法路径,那么我再走2*w也一定是合法路径,其中w表示与2相连的某条边的长度。即回到2之后再出去再回来,这样的路径一定合法。那么,如果走了某条路径回到了2,然后总距离不够的话,我们只需要加上几个2*w使得最后结果大于等于K即可。
那么如何使这个结果最小呢?我们考虑设置一个数组d[x][p]表示从2出发最后到达x点且费用对2*w取模结果为p时的最小花费。这样子原本的一个点就可以拆成2*w个点,这样跑一遍dijkstra即可求出d数组。之后,对于每一个对2*w取模后的数值,我们都可以计算把它补到大于K且距离K最近的花费,再在这些花费中取一个最小的即可。那么,这样子考虑为什么可以包含全部的而且最优的解呢?因为我们最后补的是2*w或者它的倍数,然后我把对2*w取模后的所有取值的最小花费都计算了一次,这样子得出来的最小花费一定包含所有的情况,即2*w的所有剩余系都被包括了,所以可以保证正确性。具体代码如下:
转载于http://blog.csdn.net/yasola/article/details/76684704;
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <stack>
#include <deque>
#include <string>
#include <map>
#include <set>
#include <list>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define LL long long
#define fi first
#define se second
#define mem(a,b) memset((a),(b),sizeof(a)) const int MAXN=+;
const int MAXM=+; struct Node
{
int p;
LL dis;
Node(int p, LL d):p(p), dis(d){}
}; LL K, G[MAXN][MAXN], m, ans;
bool vis[MAXN][MAXM];
LL dist[MAXN][MAXM];//从1开始到达i,模m等于j的最短路 void spfa(int s)
{
queue<Node> que;
mem(vis, );
mem(dist, 0x3f);
que.push(Node(, ));
dist[][]=;
vis[][]=true;
while(!que.empty())
{
int u=que.front().p;
LL now_dis=que.front().dis;
vis[u][now_dis%m]=false;
que.pop();
for(int i=-;i<;i+=)
{
int v=(u+i+)%;
LL next_dis=now_dis+G[u][v], next_m=next_dis%m;
if(v==s)//形成环,更行答案
{
if(next_dis<K)
ans=min(ans, next_dis+((K-next_dis-)/m+)*m);
else ans=min(ans, next_dis);
}
if(dist[v][next_m]>next_dis)
{
dist[v][next_m]=next_dis;
if(!vis[v][next_m])
{
que.push(Node(v, next_dis));
vis[v][next_m]=true;
}
}
}
}
} int main()
{
int T_T;
scanf("%d", &T_T);
while(T_T--)
{
scanf("%lld", &K);
for(int i=;i<;++i)
{
scanf("%lld", &G[i][(i+)%]);
G[(i+)%][i]=G[i][(i+)%];
}
m=*min(G[][], G[][]);//最小环
ans=((K-)/m+)*m;//只使用最短的回路
spfa();
printf("%lld\n", ans);
} return ;
}
HDU 6071 Lazy Running (同余最短路)的更多相关文章
- HDU 6071 - Lazy Running | 2017 Multi-University Training Contest 4
/* HDU 6071 - Lazy Running [ 建模,最短路 ] | 2017 Multi-University Training Contest 4 题意: 四个点的环,给定相邻两点距离, ...
- HDU 6071 Lazy Running (同余最短路 dij)
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- hdu 6071 Lazy Running 最短路建模
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) P ...
- HDU 6071 Lazy Running (最短路)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6071 题解 又是一道虐信心的智商题... 首先有一个辅助问题,这道题转化了一波之后就会化成这个问题: ...
- HDU 6071 Lazy Running(很牛逼的最短路)
http://acm.hdu.edu.cn/showproblem.php?pid=6071 题意: 1.2.3.4四个点依次形成一个环,现在有个人从2结点出发,每次可以往它相邻的两个结点跑,求最后回 ...
- HDU 6071 Lazy Running(最短路)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6071 [题目大意] 给出四个点1,2,3,4,1和2,2和3,3和4,4和1 之间有路相连, 现在 ...
- HDU 6071 同余最短路 spfa
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- 多校4 lazy running (最短路)
lazy running(最短路) 题意: 一个环上有四个点,从点2出发回到起点,走过的距离不小于K的最短距离是多少 \(K <= 10^{18} 1 <= d <= 30000\) ...
- 2017 Multi-University Training Contest - Team 4 hdu6071 Lazy Running
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6071 题目: Lazy Running Time Limit: 2000/1000 MS (J ...
随机推荐
- 【设计模式】 模式PK:抽象工厂模式VS建造者模式
1.概述 抽象工厂模式实现对产品家族的创建,一个产品家族是这样的一系列产品:具有不同分类维度的产品组合,采用抽象工厂模式则是不需要关心构建过程,只关心什么产品由什么工厂生产即可.而建造者模式则是要求按 ...
- CentOS 5.8 安装python 和 yum
centos 5.8 资源路径: http://vault.centos.org/5.8/os/x86_64/CentOS/ rpm -Uvh http://vault.centos.org/5.8 ...
- android:process结合activity启动模式的一次实践
会有这样的场景,一个应用崩溃了,而导致的该应用崩溃的原因是,该应用占用的内存大小超过了系统分配给它的最大堆大小.对象的分配,是发生在堆(heap)上面的,系统分配给每个应用的最大堆大小是固定的. 假设 ...
- hdu 1233 还是畅通工程 (最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) ...
- js 验证ip列表
如题. <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...
- Java多态的实现原理
1.多态的定义:指允许不同类的对象,对同一消息作出响应: 即同一消息可以根据发送对象的不同采用多种不同的行为方式: 2.多态的实现技术:动态绑定: 指在执行期间判断所引用对象的实际类型,根据其实际的类 ...
- python基础===理解Class的一道题
解题如下: from random import randint class Die(): def __init__(self,sides=6): self.sides = sides def rol ...
- 获取并编译最新的Notepad++源码
获取并编译最新的Notepad++源码 http://blog.csdn.net/u012814856/article/details/68947310 Notepad++源码编译及其分析 http: ...
- C# 读写XML文件示例
using System; using System.Collections.Generic; using System.Text; using System.Configuration; using ...
- sicily 1046. Plane Spotting
1046. Plane Spotting Time Limit: 1sec Memory Limit:32MB Description Craig is fond of planes. Mak ...