BZOJ2333:[SCOI2011]棘手的操作(Splay)
Description
有N个节点,标号从1到N,这N个节点一开始相互不连通。第i个节点的初始权值为a[i],接下来有如下一些操作:
U x y: 加一条边,连接第x个节点和第y个节点
A1 x v: 将第x个节点的权值增加v
A2 x v: 将第x个节点所在的连通块的所有节点的权值都增加v
A3 v: 将所有节点的权值都增加v
F1 x: 输出第x个节点当前的权值
F2 x: 输出第x个节点所在的连通块中,权值最大的节点的权值
F3: 输出所有节点中,权值最大的节点的权值
Input
输入的第一行是一个整数N,代表节点个数。
接下来一行输入N个整数,a[1], a[2], …, a[N],代表N个节点的初始权值。
再下一行输入一个整数Q,代表接下来的操作数。
最后输入Q行,每行的格式如题目描述所示。
Output
对于操作F1, F2, F3,输出对应的结果,每个结果占一行。
Sample Input
0 0 0
8
A1 3 -20
A1 2 20
U 1 3
A2 1 10
F1 3
F2 3
A3 -10
F3
Sample Output
10
10
HINT
对于30%的数据,保证 N<=100,Q<=10000
对于80%的数据,保证 N<=100000,Q<=100000
对于100%的数据,保证 N<=300000,Q<=300000
对于所有的数据,保证输入合法,并且 -1000<=v, a[1], a[2], …, a[N]<=1000
Solution
第一眼:这不splay启发式合并板子题吗?
然后就开始漫长的写写写调调调
维护多颗splay
U:splay启发式合并,一个个删除小的splay插入到大的splay里面
A1:删除val[x],插入val[x]+v
A2:开个Add数组,维护每颗splay整体加的数
A3:搞个全局变量ALL记一下就好了
F1:直接输出val[x]+Add[x]+ALL
F2:直接输出Max[ID[x]],其中ID是x所属的平衡树编号
F3::这个相当于要维护Max[]的最大值。开个可删堆,每次Max[i]变化的时候就把旧的删掉,新的插入,F3查询的时候直接输出堆顶即可。
emmm话说为什么大部分人都写的堆啊_(Xз」∠)_
Code
#include<iostream>
#include<cstdio>
#include<queue>
#define N (600000+1000)
using namespace std; int Son[N][],Father[N],Size[N];
int ID[N],Add[N],Val[N],Max[N];
int Root[N],n,m,x,y,v,ALL;
char opt[];
priority_queue<int>Heap,Del; int Get(int x){return Son[Father[x]][]==x;}
void Update(int x){Size[x]=Size[Son[x][]]+Size[Son[x][]]+;}
void Clear(int x){Son[x][]=Son[x][]=Father[x]=Size[x]=Val[x]=;} int Pre(int x)
{
x=Son[x][];
while (Son[x][]) x=Son[x][];
return x;
} int Get_Max(int x)
{
while (Son[x][]) x=Son[x][];
return Val[x];
} void Rotate(int x)
{
int wh=Get(x);
int fa=Father[x], fafa=Father[fa];
if (fafa) Son[fafa][Son[fafa][]==fa]=x;
Son[fa][wh]=Son[x][wh^]; Father[fa]=x;
if (Son[fa][wh]) Father[Son[fa][wh]]=fa;
Son[x][wh^]=fa; Father[x]=fafa;
Update(fa); Update(x);
} void Splay(int x)
{
for (int fa; (fa=Father[x]); Rotate(x))
if (Father[fa])
Rotate(Get(fa)==Get(x)?fa:x);
Root[ID[x]]=x;
} void Insert(int x,int y,int v)
{
int now=Root[ID[y]],fa=;
while ()
{
fa=now,now=Son[now][v>Val[now]];
if (now==)
{
Val[x]=v; Size[x]=; Father[x]=fa; ID[x]=ID[y];
Son[fa][v>Val[fa]]=x; Splay(x); return;
}
}
} void Delete(int x)
{
Splay(x);
if (!Son[Root[ID[x]]][] && !Son[Root[ID[x]]][])
{
Clear(Root[ID[x]]);
Root[ID[x]]=;
return;
}
if (!Son[Root[ID[x]]][])
{
Root[ID[x]]=Son[Root[ID[x]]][];
Clear(Father[Root[ID[x]]]);
Father[Root[ID[x]]]=;
return;
}
if (!Son[Root[ID[x]]][])
{
Root[ID[x]]=Son[Root[ID[x]]][];
Clear(Father[Root[ID[x]]]);
Father[Root[ID[x]]]=;
return;
}
int oldroot=Root[ID[x]];
int pre=Pre(Root[ID[x]]);
Splay(pre);
Son[Root[ID[x]]][]=Son[oldroot][];
Father[Son[oldroot][]]=Root[ID[x]];
Clear(oldroot);
Update(Root[ID[x]]);
} void Merge(int x,int y)
{
if (Son[x][]) Merge(Son[x][],y);
if (Son[x][]) Merge(Son[x][],y);
int val=Val[x]+Add[ID[x]]-Add[ID[y]]; Clear(x);
Insert(x,y,val);
} int main()
{
scanf("%d",&n);
for (int i=; i<=n; ++i)
{
scanf("%d",&x);
ID[i]=i; Val[i]=x; Max[i]=x;
Root[i]=i; Size[i]=; Heap.push(x);
}
scanf("%d",&m);
for (int i=; i<=m; ++i)
{
scanf("%s",opt);
if (opt[]=='U')
{
scanf("%d%d",&x,&y);
if (ID[x]!=ID[y])
{
Del.push(min(Max[ID[x]],Max[ID[y]]));
if (Size[Root[ID[x]]]>Size[Root[ID[y]]]) swap(x,y);
Max[ID[y]]=max(Max[ID[y]],Max[ID[x]]);
Merge(Root[ID[x]],Root[ID[y]]);
}
} if (opt[]=='A' && opt[]=='')
{
scanf("%d%d",&x,&v);
int val=Val[x]+v;
if (Size[Root[ID[x]]]==)
{
Val[x]=val;
Del.push(Max[ID[x]]);
Max[ID[x]]=val+Add[ID[x]];
Heap.push(Max[ID[x]]);
continue;
}
Delete(x); Insert(x,Root[ID[x]],val);
Del.push(Max[ID[x]]);
Max[ID[x]]=Get_Max(Root[ID[x]])+Add[ID[x]];
Heap.push(Max[ID[x]]);
} if (opt[]=='A' && opt[]=='')
{
scanf("%d%d",&x,&v), Add[ID[x]]+=v;
Del.push(Max[ID[x]]);
Max[ID[x]]=Get_Max(Root[ID[x]])+Add[ID[x]];
Heap.push(Max[ID[x]]);
} if (opt[]=='A' && opt[]=='')
scanf("%d",&v),ALL+=v; if (opt[]=='F' && opt[]=='')
scanf("%d",&x), printf("%d\n",Val[x]+Add[ID[x]]+ALL); if (opt[]=='F' && opt[]=='')
{
scanf("%d",&x), printf("%d\n",Max[ID[x]]+ALL);
} if (opt[]=='F' && opt[]=='')
{
while ((!Heap.empty()) && (!Del.empty()) && Heap.top()==Del.top())
Heap.pop(), Del.pop();
printf("%d\n",Heap.top()+ALL);
}
}
}
BZOJ2333:[SCOI2011]棘手的操作(Splay)的更多相关文章
- 真--可并堆模板--BZOJ2333: [SCOI2011]棘手的操作
n<=300000个点,开始是独立的,m<=300000个操作: 方法一:单点修改.查询,区间修改.查询?等等等等这里修改是块修改不是连续的啊,那就让他连续呗!具体方法:离线后,每次连接两 ...
- BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...
- [bzoj2333] [SCOI2011]棘手的操作 (可并堆)
//以后为了凑字数还是把题面搬上来吧2333 发布时间果然各种应景... Time Limit: 10 Sec Memory Limit: 128 MB Description 有N个节点,标号从1 ...
- bzoj千题计划217:bzoj2333: [SCOI2011]棘手的操作
http://www.lydsy.com/JudgeOnline/problem.php?id=2333 读入所有数据,先模拟一遍所有的合并操作 我们不关心联通块长什么样,只关心联通块内有谁 所以可以 ...
- 2019.01.17 bzoj2333: [SCOI2011]棘手的操作(启发式合并)
传送门 启发式合并菜题. 题意:支持与连通块有关的几种操作. 要求支持连边,单点修改,连通块修改,全局修改和单点查值,连通块查最大值和全局最大值. 我们对每个连通块和答案用可删堆维护最大值,然后用启发 ...
- BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】
题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...
- bzoj2333 [SCOI2011]棘手的操作(洛谷3273)
题目描述 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作:U x y: 加一条边,连接第x个节点和第y个节点A1 x v: 将第x个节点的权 ...
- bzoj2333 [SCOI2011]棘手的操作
用set维护每个联通块里的最值,multiset维护所有块里的最值,并查集维护连通性,然后随便搞搞就行了,合并时候采用启发式合并.复杂度O(nlognlogn),大概勉强过的程度,反正跑的很慢就是了. ...
- (右偏树)Bzoj2333: [SCOI2011]棘手的操作
题面 戳我 Sol 右偏树滑稽+并查集 再在全局开一个可删除的堆(priority_queue) 注意细节 # include <bits/stdc++.h> # define RG re ...
随机推荐
- 使用webgl(three.js)创建3D机房(升级版)-普通机房
序: 目前市面上的数据中心主要分两大类,一类属于普通数据中心,机柜按照XY轴 有序排放,一类属于微模块集合的数据中心,多个机柜组合而成的微模块. 本节课主要详细讲解普通数据中心的可视化展示,浏览器直 ...
- 深入理解JavaScript系列(48):对象创建模式(下篇)
介绍 本篇主要是介绍创建对象方面的模式的下篇,利用各种技巧可以极大地避免了错误或者可以编写出非常精简的代码. 模式6:函数语法糖 函数语法糖是为一个对象快速添加方法(函数)的扩展,这个主要是利用pro ...
- Firebird 日期时间
查询当前时间: 1.使用内置系统变量 select current_timestamp from rdb$database 2.使用now字符串转换 select cast('NOW' as time ...
- C#实体对象序列化成Json,格式化,并让字段的首字母小写
解决办法有两种:第一种:使用对象的字段属性设置JsonProperty来实现(不推荐,因为需要手动的修改每个字段的属性) public class UserInfo { [JsonProperty(& ...
- 一:Maven知识整理
一:maven的好处 1.依赖管理:对jar包的统一管理 可以节省空间 2.项目一键构建: 编码 编译 测试(junit) 运行 打包 部署 一个 tomcat:run就能把项目运行起来 Maven能 ...
- jdk各版本
1.jdk1.7: 1.1二进制变量的表示,支持将整数类型用二进制来表示,用0b开头: 1.2 Switch语句支持string类型: 2.jdk1.8:
- HDU 2167 Pebbles 状态压缩dp
Pebbles Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- 二、IOC容器基本原理
IOC容器就是具有依赖注入功能的容器,IOC容器负责实例化.定位.配置应用程序中的对象及建立这些对象间的依赖.应用程序无需在代码中new相关的对象,应用程序由IOC容器进行组装. spring IOC ...
- centos安装后,连接不上网络,yum命令执行can not find a valid baseurl for repo: base/7/x86-64
检查了网络适配器是NAT模式没问题,按照网友的方法成功解决: 1.vi /etc/sysconfig/network-scripts/ifcfg-ens123(不是每个主机都是ens123) 把ON ...
- VBA将指定Excel表数据批量生成到另一个Excel表中,每个sheet表一行数据
Sub AutoInputValNewExcel() Dim sh1, sh2 As Worksheet Dim ws1, ws2 As Workbook ) ) ).Sheets() iRows = ...