Pandas可视化
基本绘图:绘图
Series和DataFrame上的这个功能只是使用matplotlib
库的plot()
方法的简单包装实现。参考以下示例代码 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
periods=10), columns=list('ABCD'))
df.plot()
执行上面示例代码,得到以下结果 -
如果索引由日期组成,则调用gct().autofmt_xdate()
来格式化x
轴,如上图所示。
我们可以使用x
和y
关键字绘制一列与另一列。
绘图方法允许除默认线图之外的少数绘图样式。 这些方法可以作为plot()
的kind
关键字参数提供。这些包括 -
bar
或barh
为条形hist
为直方图boxplot
为盒型图area
为“面积”scatter
为散点图
条形图
现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()
执行上面示例代码,得到以下结果 -
要生成一个堆积条形图,通过指定:pass stacked=True -
import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)
执行上面示例代码,得到以下结果 -
要获得水平条形图,使用barh()
方法 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.barh(stacked=True)
执行上面示例代码,得到以下结果 -
直方图
可以使用plot.hist()
方法绘制直方图。我们可以指定bins
的数量值。
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
df.plot.hist(bins=20)
执行上面示例代码,得到以下结果 -
要为每列绘制不同的直方图,请使用以下代码 -
import pandas as pd
import numpy as np
df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
df.hist(bins=20)
执行上面示例代码,得到以下结果 -
箱形图
Boxplot可以绘制调用Series.box.plot()
和DataFrame.box.plot()
或DataFrame.boxplot()
来可视化每列中值的分布。
例如,这里是一个箱形图,表示对[0,1)
上的统一随机变量的10
次观察的五次试验。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()
执行上面示例代码,得到以下结果 -
区域块图形
可以使用Series.plot.area()
或DataFrame.plot.area()
方法创建区域图形。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()
执行上面示例代码,得到以下结果 -
散点图形
可以使用DataFrame.plot.scatter()
方法创建散点图。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')
执行上面示例代码,得到以下结果 -
饼状图
饼状图可以使用DataFrame.plot.pie()
方法创建。
import pandas as pd
import numpy as np
df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)
执行上面示例代码,得到以下结果 -
Pandas可视化的更多相关文章
- pandas可视化:各种图的简单使用
一.Matplotlib中几种图的名字 折线图:plot 柱形图:bar 直方图:hist 箱线图:box 密度图:kde 面积图:area 散点图:scatter 散点图矩阵:scatter_mat ...
- Pandas与Matplotlib结合进行可视化
前面所介绍的都是以表格的形式中展现数据, 下面将介绍Pandas与Matplotlib配合绘制出折线图, 散点图, 饼图, 柱形图, 直方图等五大基本图形. Matplotlib是python中的一个 ...
- 数据分析之---Python可视化工具
1. 数据分析基本流程 作为非专业的数据分析人员,在平时的工作中也会遇到一些任务:需要对大量进行分析,然后得出结果,解决问题. 所以了解基本的数据分析流程,数据分析手段对于提高工作效率还是非常有帮助的 ...
- Python数据分析--Pandas知识点(三)
本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- Python爱好者社区历史文章列表(每周append更新一次)
2月22日更新: 0.Python从零开始系列连载: Python从零开始系列连载(1)——安装环境 Python从零开始系列连载(2)——jupyter的常用操作 Python从零开始系列连载( ...
- 机器学习之step by step实战及知识积累笔记
数据工作者工作时间划分 据crowdflower数据科学研究报告,数据科学工作者的时间分配主要在以下几个领域: 首先是数据收集要占20%左右的时间和精力,接着就是数据清洗和再组织需要占用60%的时间. ...
- 世界杯:用Python分析热门夺冠球队-(附源代码)
2018年,火热的世界杯即将拉开序幕.在比赛开始之前,我们不妨用 Python 来对参赛队伍的实力情况进行分析,并大胆的预测下本届世界杯的夺冠热门球队. 通过数据分析,可以发现很多有趣的结果,比如: ...
随机推荐
- 使用node,express,mongodb,ionic,ejs搭建的简单app个人总结
1.每次修改app.js或者其他路由js文件,都必须重启node app.js,否则修改不起作用!!! 2.<link rel="stylesheet" href=" ...
- Oracle http://127.0.0.1:8080/apex无法访问解决方案
造成无法访问的原因多数情况是由于Oracle中TNS的配置发生了改变. 造成TNS配置有问题的原因可能是:1. 修改了计算机名 2. 修改了IP 默认oracleXE 启动OracleXETNS ...
- ubuntu 安装低版本firefox
firefox 57以后很多插件不支持了,ubuntu16自带火狐版本59,想换回56. 1.下载想换回的版本 https://ftp.mozilla.org/pub/mozilla.org/fire ...
- FineUI 获取x_state并解析
public JObject PostBackStates() { JObject xState = null; if (Page.IsPostBack) { string state = HttpC ...
- mysql insert中用case
insert into urls(company,counterType,mdUrl,tradeUrl) values('test', CASE 'test'WHEN 'CTP' THEN 1WHEN ...
- 2 CDuiString的bug
重温了一下 Effective C++,发现这就是条款24所指出的问题,看来读书百遍不如写代码一遍啊 在Notify处理消息时会有很多if语句,我通常喜欢把常量放在双等号前面,变量放在后面,比如: ...
- 转!java自定义注解
转自:http://blog.csdn.net/yixiaogang109/article/details/7328466 Java注解是附加在代码中的一些元信息,用于一些工具在编译.运行时进行解析 ...
- 关于Nginx部署Django项目的资料收集
参考:https://www.cnblogs.com/chenice/p/6921727.html 参考:https://blog.csdn.net/fengzq15/article/details/ ...
- is和==的区别以及编码、解码
一.is和==的区别 1,id( ) id( )是python的一个内置函数,通过id( )我们可以查看到一个变量表的值在内存中的地址: s1 = 2 print(id(s1)) # 15143680 ...
- 分布式计算hadoop三大组件
设计原则:移动计算,而不是移动数据 计算层:Map/Reduce调度层:YARN数据层:HDFS 这三层之间没有必然的依赖性,只是经常这么搭配,而且都是hadoop那个包里一起安装的,三层都可以独立运 ...