http://www.lydsy.com/JudgeOnline/problem.php?id=3432

题目说要相互可达,但是只需要从某个点做bfs然后判断其它点是否可达即可。

原因太简单了。。。。。因为它是abs

所以我们二分D,然后判断即可

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr2(a, b, c) for1(i, 1, b) { for1(j, 1, c) cout << a[i][j]; cout << endl; }
#define printarr1(a, b) for1(i, 1, b) cout << a[i]; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=505, M=300005, dx[]={-1, 1, 0, 0}, dy[]={0, 0, 1, -1};
int mp[N][N], must[N][N], n, m, front, tail, vis[N][N], X, Y;
struct dat{ int x, y; }q[M]; void bfs(int D) {
for1(i, 1, n) for1(j, 1, m) vis[i][j]=0;
front=tail=0;
q[tail].x=X, q[tail++].y=Y; vis[X][Y]=1;
int x, y;
while(tail!=front) {
dat &t=q[front++]; if(front==M) front=0;
x=t.x, y=t.y;
rep(i, 4) {
int fx=dx[i]+x, fy=dy[i]+y;
if(fx<1 || fy<1 || fx>n || fy>m || vis[fx][fy] || abs(mp[fx][fy]-mp[x][y])>D) continue;
vis[fx][fy]=1;
q[tail].x=fx; q[tail++].y=fy; if(tail==M) tail=0;
}
}
}
bool check(int D) {
bfs(D);
for1(i, 1, n) for1(j, 1, m) if(must[i][j]==1 && !vis[i][j]) return false;
return true;
} int main() {
int mx=0;
read(n); read(m);
for1(i, 1, n) for1(j, 1, m) read(mp[i][j]), mx=max(mx, mp[i][j]);
for1(i, 1, n) for1(j, 1, m) {
read(must[i][j]); if(must[i][j]==1) X=i, Y=j;
}
int l=0, r=mx;
while(l<=r) {
int mid=(l+r)>>1;
if(check(mid)) r=mid-1;
else l=mid+1;
}
print(r+1);
return 0;
}

Description

The cross-country skiing course at the winter Moolympics is described by an M x N grid of elevations (1 <= M,N <= 500), each elevation being in the range 0 .. 1,000,000,000. Some of the cells in this grid are designated as waypoints for the course. The organizers of the Moolympics want to assign a difficulty rating D to the entire course so that a cow can reach any waypoint from any other waypoint by repeatedly skiing from a cell to an adjacent cell with absolute elevation difference at most D. Two cells are adjacent if one is directly north, south, east, or west of the other. The difficulty rating of the course is the minimum value of D such that all waypoints are mutually reachable in this fashion.

N*M的格子,每个格子都有一个分值v,有的格子一定要经过.两个格子i,j可以互相到达,当且仅当它们有一条边重复(即上下左右方向),且abs(vi-vj)<=D.

Input

* Line 1: The integers M and N.

* Lines 2..1+M: Each of these M lines contains N integer elevations.

* Lines 2+M..1+2M: Each of these M lines contains N values that are
either 0 or 1, with 1 indicating a cell that is a waypoint.

Output

* Line 1: The difficulty rating for the course (the minimum value of D
such that all waypoints are still reachable from each-other).

Sample Input

3 5
20 21 18 99 5
19 22 20 16 26
18 17 40 60 80
1 0 0 0 1
0 0 0 0 0
0 0 0 0 1

INPUT DETAILS: The ski course is described by a 3 x 5 grid of
elevations. The upper-left, upper-right, and lower-right cells are
designated as waypoints.

Sample Output

21

OUTPUT DETAILS: If D = 21, the three waypoints are reachable from
each-other. If D < 21, then the upper-right waypoint cannot be
reached from the other two.

HINT

Source

【BZOJ】3432: [Usaco2014 Jan]Cross Country Skiing (bfs+二分)的更多相关文章

  1. BZOJ 3432: [Usaco2014 Jan]Cross Country Skiing (二分+染色法)

    还是搜索~~可以看出随着D值的增大能到达的点越多,就2分d值+染色法遍历就行啦~~~ CODE: #include<cstdio>#include<iostream>#incl ...

  2. 洛谷 题解 P4955 【[USACO14JAN]Cross Country Skiing 越野滑雪】

    二分+DFS 看到这么多大佬写了并查集,BFS的,还没有人写DFS版的,那么肯定是要来水水积分的啦毕竟这可是道伪紫题呢! 做法楼上楼下也讲得很清楚了吧,详见代码的注释 #include<bits ...

  3. BZOJ 3430: [Usaco2014 Jan]Ski Course Rating(并查集+贪心)

    题面 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 136 Solved: 90 [Submit][Status][Discuss] Descript ...

  4. BZOJ 3433 [Usaco2014 Jan]Recording the Moolympics:贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3433 题意: 给出n个区间[a,b). 有两个记录器,每个记录器中存放的区间不能重叠. 求 ...

  5. bzoj 1594: [Usaco2008 Jan]猜数游戏【二分+线段树】

    写错一个符号多调一小时系列-- 二分答案,然后判断这个二分区间是否合法: 先按值从大到小排序,然后对于值相同的一些区间,如果没有交集则不合法:否则把并集在线段树上打上标记,然后值小于这个值的区间们,如 ...

  6. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线 (二分+最短路)

    题意: 给一个2e4带正边权的图,可以免费k个边,一条路径的花费为路径上边权最大值,问你1到n的最小花费 思路: 对于一个x,我们如果将大于等于x的边权全部免费,那么至少需要免费的边的数量就是 “设大 ...

  7. BZOJ3433: [Usaco2014 Jan]Recording the Moolympics

    3433: [Usaco2014 Jan]Recording the Moolympics Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 55  So ...

  8. 3433: [Usaco2014 Jan]Recording the Moolympics

    3433: [Usaco2014 Jan]Recording the Moolympics Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 137  S ...

  9. [bzoj 3048] [Usaco2013 Jan]Cow Lineup

    [bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...

随机推荐

  1. lua coroutine

    Lua中协程都放在表coroutine中. Lua协程的四个状态 挂起(suspended):一个协程被创建的时候,处于挂起状态,不会自动运行. 运行(running):coroutine.resum ...

  2. 苹果推送服务器端证书配置.pem生成

    做苹果推送服务器,很重要的一步,就是生成与苹果APNS连接的证书,一般是.pem文件: 首先在苹果开发者中心 生成 aps_devlopment.cer文件:然后下载:双击导入钥匙串: 打开钥匙串 - ...

  3. Hibernate关系映射(三) 多对多

    一.使用用户User和Role实现多对多的示例 User.java,实现对Role的引用 package com.lxit.entity; import java.util.HashSet; impo ...

  4. 解决64位操作系统下运行psql的问题

    我的机器环境是 win7 64位.正常情况下,只需要安装plsql 和 oracle client,配置好 tnsname.ora 就能正常访问数据库.实际上遇到了几个问题. 1. 在tnsnames ...

  5. 批量部署 自动化之 - [pssh](转)

    并行执行命令工具简介 作为运维工程师来讲,机器数量到一定级别的时候,批量运维和管理机器就是一件费神的事情,还好有很多可以批量并行执行命令的工具,比如 pssh , python fabrictaoba ...

  6. 【ajax+php】动态展示4级单位(省、市、县、镇)

    1.本篇教程以ajax+php动态展示[省.市.县.镇]四级地区单位 2.效果图:    3.不废话,贴代码! HTML: <div class="form-group"&g ...

  7. java 判断一个字符串是否包含某个字符串中的字符

    public static void main(String[] args) {       if(isHave("购买ab","出售AssBC"))   Sy ...

  8. 每秒处理3百万请求的Web集群搭建-如何生成每秒百万级别的 HTTP 请求?

    本文是构建能够每秒处理 3 百万请求的高性能 Web 集群系列文章的第一篇.它记录了我使用负载生成器工具的一些经历,希望它能帮助每一个像我一样不得不使用这些工具的人节省时间. 负载生成器是一些生成用于 ...

  9. java基础讲解14-----IO

    package com.io; import java.io.File;import java.io.IOException; public class IoClass {        /**   ...

  10. linuxubuntu升级.net core版本到2.0

    直接看这里 https://www.microsoft.com/net/core#linuxubuntu