【题意】将n划分成不同正整数的和的方案数。

【算法】动态规划

【题解】

暴力:f[i][j]:只用前1..i的数字,总和为j的方案数

本质上是01背包,前i个物体,总质量为j的方案数

f[i][j]=f[i-1][j]+f[i-1][j-i]

复杂度O(n^2)

优化:

我们发现,因为要求数字不同,那么数字最多也小于sqrt(n*2)个。

极端情况:1+2+3+...+mx=n mx<sqrt(n*2)

所以可以改一下状态的设计

f[i][j]:用了i个数字,总和为j的方案数。

转移状态:

①如果i个数里没有1:那么把i个数字都-1,就对应“取了i个数字,总和为j-i”的,i个数都+1

②i个数字里有1:对应"取了i-1个数字,总和为j-i"的情况,再加一个新的数字1,其他i-1个数也都+1啊

f[i][j]=f[i-1][j-i]+f[i][j-i]

初始状态f[0][0]=1

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
const long long MOD=;
int f[][maxn],n;
int main()
{
scanf("%d",&n);
f[][]=; for(int i=;i*i<=n*;i++)
for(int j=;j<=n;j++)
if(j-i>=)f[i][j]=(f[i-][j-i]+f[i][j-i])%MOD;
long long ans=;
for(int i=;i*i<=n*;i++)
ans=(ans+f[i][n])%MOD;
printf("%lld",ans);
return ;
}

总结一下几种情况:

1.$f_{n,m}$表示将数字n分成m个非负整数的方案。

$$f_{i,j}=f_{i,j-1}+f_{i-j,j}$$

如果方案中有0就去掉,否则整体-1。

2.$f_{n,m}$表示将数字n分成m个正整数的方案。

$$f_{i,j}=f_{i-1,j-1}+f_{i-j,j}$$

如果方案中有1就去掉,否则整体-1。

3.$f_{n,m}$表示将数字n分成m个不同正整数的方案数。

$$f_{i,j}=f_{i-j,j-1}+f_{i-j,j}$$

强制递增,如果方案第一位是1那么去掉后整体-1,否则整体-1。

【51NOD】1201 整数划分的更多相关文章

  1. 51nod 1201 整数划分 dp

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB   收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2,4} {1,2 ...

  2. 51nod 1201 整数划分 基础DP

    1201 整数划分  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} ...

  3. 51Nod 1201 整数划分 (经典dp)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 题意不多说了. dp[i][j]表示i这个数划分成j个数 ...

  4. 51nod 1201 整数划分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 DP转移方程:dp[i][j] = dp[i-j][j]+dp[i ...

  5. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  6. 51nod 1201:整数划分 超级好的DP题目

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} { ...

  7. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  8. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  9. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

随机推荐

  1. 开启假期JAVA之路

    . 从最基础的JAVA开始学起,已经上了三节课啦!希望在课程结束后能完成一个令自己满意的连连看项目,期待ing~ 慢慢的从简单的代码上手了~ . 用循环输出等腰三角形的效果 import java.u ...

  2. arcgis api for javascript 各个版本的SDK下载

    1.首先,进入下载网站,需要登录才能下载.下载链接 2.选择需要下载的版本,进行下载.

  3. 3dContactPointAnnotationTool开发日志(二四)

      添加了清空2d接触点的按钮,将输出的2d接触点的单位变成了像素,原点在图像的左下角.   对于obj文件的适配更加多样化了.

  4. 利用Vue v-model实现一个自定义的表单组件

    原文请点此链接  http://blog.csdn.net/yangbingbinga/article/details/61915038

  5. Jenkins系列-Jenkins添加git密钥对

    添加密钥 1.添加git用户和git密码对 ,用于git客户端从gitlab上拉取代码到本地

  6. 【转】how can i build fast

    http://blog.csdn.net/pcliuguangtao/article/details/5830860

  7. asp.net mvc4使用log4.net 日志功能

    对于网站来讲,不能把异常信息显示给用户,异常信息只能记录到日志,出了问题把日志文件发给开发人员,就能知道问题所在. 下面演示网站 出错后自动添加出错日志的实例 (1)新建一个WebApplicatio ...

  8. RT-thread finsh组件工作流程

    finsh是RT-Thread的命令行外壳(shell),提供一套供用户在命令行的操作接口,主要用于调试.查看系统信息.在大部分嵌入式系统中,一般开发调试都使用硬件调试器和printf日志打印,在有些 ...

  9. BZOJ 1055 玩具取名(区间DP)

    很显然的区间DP,定义dp[i][j][k], 如果dp[i][j][k]=1表示字符串[i,j]可以组成k字符. # include <cstdio> # include <cst ...

  10. 三节点搭建openstack-Mitaka版本

    前言: 现在的云计算平台已经非常火,也非常的稳定了.像阿里云平台,百度云平台等等,今天咱们基于openstack来搭建一个云平台 注意: 本次平台搭建为三节点搭建(没有外部存储节点,所有存储为本地存储 ...