【算法】数学

【题解】斯特林公式:

#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
const double pi=3.1415926535898,e=2.718281828459;
int main()
{
int t;
scanf("%d",&t);
for(int i=;i<=t;i++)
{
long long n;
scanf("%lld",&n);
long long ans=0.5*log10(2.0*pi*n)+1.0*n*log10(1.0*n/e)+;
printf("%lld\n",ans);
}
return ;
}

【51NOD-0】1130 N的阶乘的长度 V2(斯特林近似)的更多相关文章

  1. 1130 N的阶乘的长度 V2(斯特林近似)

    1130 N的阶乘的长度 V2(斯特林近似) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720, ...

  2. 51nod 1130 N的阶乘的长度 V2(斯特林近似)

    输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.   Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + ...

  3. 51nod 1130 N的阶乘的长度(斯特林近似)

    输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.   Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + ...

  4. 51Nod 1058: N的阶乘的长度(斯特林公式)

    1058 N的阶乘的长度  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Inp ...

  5. 51nod-1130-N的阶乘的长度V2(斯特林近似)-套斯特林公式

    输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. 输入 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每 ...

  6. N的阶乘的长度 V2(斯特林近似) 求 某个大数的阶乘的位数 .

    求某个大数的阶乘的位数 . 得到的值  需要 +1 得到真正的位数 斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义.在数学分析中,大多都是利用Г函数.级数和含参变量的积分等 ...

  7. 51Nod 1058 N的阶乘的长度

    输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.   Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Out ...

  8. 51nod 1058 N的阶乘的长度 位数公式

    1058 N的阶乘的长度基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.Input输入N( ...

  9. (斯特林公式)51NOD 1058 N的阶乘的长度

    输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.   Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Out ...

随机推荐

  1. lintcode-149-买卖股票的最佳时机

    149-买卖股票的最佳时机 假设有一个数组,它的第i个元素是一支给定的股票在第i天的价格.如果你最多只允许完成一次交易(例如,一次买卖股票),设计一个算法来找出最大利润. 样例 给出一个数组样例 [3 ...

  2. C/S结构

    C/S结构 编辑 同义词 C/S架构一般指C/S结构 C/S 结构,即大家熟知的客户机和服务器结构.它是软件系统体系结构,通过它可以充分利用两端硬件环境的优势,将任务合理分配到Client端和Serv ...

  3. Java设计

    重构前 CustomDataChar | getConnection()findCustomers()createChar()displayChar() 重构后 CustomDataChar | da ...

  4. svn checkout不包括根目录

    在后面加 “.” 即可,如下: svn co svn://127.0.0.1/ylshop/ . 转载请注明博客出处:http://www.cnblogs.com/cjh-notes/

  5. AngularJS 中特性(attr)和属性(prop)的区别

    attr() 和 removeAttr() 方法是对特性进行处理的, 而 prop() 是对属性进行操作的 , 但是很多时候操作的东西是同一个 , 但是也是有区别的, 区别在于prop方法处理的是被 ...

  6. Winform程序部署方式总结二——Windows Installer发布

    针对Winform程序,介绍两种常用打包方式:ClickOnce和Windows Installer 应用程序如下: 二.Windows Installer发布 1.新建项目 创建后视图 第一步: 应 ...

  7. BZOJ 2326 数学作业(分段矩阵快速幂)

    实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostr ...

  8. BZOJ 1022 小约翰的游戏(anti-sg)

    这是个anti-sg问题,套用sj定理即可解. SJ定理 对于任意一个Anti-SG游戏,如果定义所有子游戏的SG值为0时游戏结束,先手必胜的条件: 1.游戏的SG值为0且所有子游戏SG值均不超过1. ...

  9. Python 基本数据结构

    Python基本数据结构 数据结构:通俗点儿说,就是存储数据的容器.这里主要介绍Python的4种基本数据结构:列表.元组.字典.集合: 格式如下: 列表:list = [val1, val2, va ...

  10. [HNOI2004]树的计数 prufer数列

    题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...