[Luogu 1963] NOI2009 变换序列
[Luogu 1963] NOI2009 变换序列
什么?二分图匹配?这个确定可以建图?
「没有建不成图的图论题,只有你想不出的建模方法。」
建图相当玄学,不过理解大约也那么奇怪。
题里面对D(x,y)的定义那一长句,一开始没看明白,但实际会发现是一个环,而对于每一个点u,符合给定距离的点都有且只有2个(v1 && v2),连u->v1 && u->v2。
对于链式前向星选手,连边的时候注意先连终点序号大的,这样才能保证遍历时从小到大。
为什么要做这个操作呢?因为要求输出字典序最小的解,就必须保证较小的点优先匹配较小的点。
匈牙利算法的过程,总是通过调整先前匹配的点,而使当前点尽量不动。
所以,匈牙利算法倒序跑,增广时优先选小的点,这样就能够保证「越小的点越能匹配较小的点」,从而实现字典序最小化。(贪心思想)
最终输出X部每个点的匹配点即可。
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=20010,MAXM=20010;
bool vis[MAXN];
int n,cnt,ans,head[MAXN],match[MAXN];
struct edge
{
int nxt,to;
}e[MAXM];
int Solve(int x)
{
if(x<0)
x+=n;
if(x>=n)
x-=n;
return x+n;
}
void AddEdge(int u,int v)
{
e[++cnt].nxt=head[u],e[cnt].to=v,head[u]=cnt;
}
void AddEdges(int u,int x)
{
int v1=Solve(u+x),v2=Solve(u-x);
if(v1<v2)
swap(v1,v2);
AddEdge(u,v1),AddEdge(u,v2);
}
bool DFS(int u)
{
for(int i=head[u],v;i;i=e[i].nxt)
if(!vis[v=e[i].to])
{
vis[v]=1;
if(!match[v] || DFS(match[v]))
{
match[u]=v,match[v]=u;
return 1;
}
}
return 0;
}
bool Hungary(void)
{
for(int i=n-1;i>=0;--i)
if(!match[i])
{
memset(vis,0,sizeof vis);
ans+=DFS(i);
}
return n==ans;
}
int main(int argc,char *argv[])
{
scanf("%d",&n);
for(int i=0,x;i<n;++i)
{
scanf("%d",&x);
AddEdges(i,x);
}
if(Hungary())
for(int i=0;i<n;++i)
printf("%d ",match[i]-n);
else
printf("No Answer");
putchar('\n');
return 0;
}
谢谢阅读
[Luogu 1963] NOI2009 变换序列的更多相关文章
- Luogu P1963 [NOI2009]变换序列(二分图匹配)
P1963 [NOI2009]变换序列 题意 题目描述 对于\(N\)个整数\(0,1, \cdots ,N-1\),一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中\(T_i \in ...
- Bzoj 1562: [NOI2009]变换序列 匈牙利算法,二分图匹配
题目: http://cojs.tk/cogs/problem/problem.php?pid=409 409. [NOI2009]变换序列 ★★☆ 输入文件:transform.in 输出文 ...
- BZOJ 1562 [NOI2009] 变换序列
[NOI2009] 变换序列 [题解] 就是有一个序列,每个位置可以填两个数,不可重复,问最小字典序. 显然,可以建一个二分图,判合法就是找完美匹配. 那怎么弄最小字典序呢?有好多种解法,我这里给出了 ...
- noi2009变换序列
noi2009变换序列 一.题目 1843 变换序列 2009年NOI全国竞赛 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 题目描述 ...
- 【bzoj1562】 NOI2009—变换序列
http://www.lydsy.com/JudgeOnline/problem.php?id=1562 (题目链接) 题意 给出一个序列(0~n-1),这个序列经过某个变换会成为另外一个序列,但是其 ...
- bzoj1562[NOI2009]变换序列——2016——3——12
任意门:http://www.lydsy.com/JudgeOnline/problem.php?id=1562 题目: 对于0,1,…,N-1的N个整数,给定一个距离序列D0,D1,…,DN-1,定 ...
- P1963 [NOI2009]变换序列
对于\(N\)个整数\(0, 1, \cdots, N-1,\)一个变换序列\(T\)可以将\(i\)变成\(T_i\),其中 \(T_i \in \{ 0,1,\cdots, N-1\}\)且 \( ...
- 【BZOJ1562】【jzyzOJ1730】【COGS409】NOI2009变换序列 二分图匹配
[问题描述] 对于N个整数0, 1, ……, N-1,一个变换序列T可以将i变成Ti,其中 定义x和y之间的距离.给定每个i和Ti之间的距离D(i,Ti), 你需要求出一个满足要求的变换 ...
- BZOJ1562: [NOI2009]变换序列(二分图 匈牙利)
Description Input Output Sample Input 5 1 1 2 2 1 Sample Output 1 2 4 0 3 HINT 30%的数据中N≤50:60%的数据中N≤ ...
随机推荐
- Javascript闭包演示【转】
文章出自http://www.cnblogs.com/snandy/archive/2011/03/01/1967628.html 有个网友问了个问题,如下的html,为什么点击所有的段落p输出都是5 ...
- sql 至少含有
查询Score表中至少有5名学生选修的并以3开头的课程的平均分数: select avg(degree),cnofrom scorewhere cno like '3%'group by cnohav ...
- poj 3009 (深搜求最短路)
题目大意就是求在特定规则下的最短路,这个规则包含了消除障碍的操作.用BFS感觉选择消除障碍的时候不同路径会有影响,用DFS比较方便状态的还原(虽然效率比较低),因此这道题目采用DFS来写. 写的第一次 ...
- JavaScript初探系列之面向对象
面向对象的语言有一个标志,即拥有类的概念,抽象实例对象的公共属性与方法,基于类可以创建任意多个实例对象,一般具有封装.继承.多态的特性!但JS中对象与纯面向对象语言中的对象是不同的,ECMA标准定义J ...
- IPReversePathFilter
nstat TcpExtIPReversePathFilter for i in /proc/sys/net/ipv4/conf/*/rp_filter ; do > echo 0 > $ ...
- Zigbee安全基础篇Part.3
原文地址: https://www.4hou.com/wireless/14294.html 导语:在之前的文章中提供了ZigBee协议及其安全功能的简要概述.在本文中,我们将探讨可在ZigBee网络 ...
- python爬虫 赶集网
#coding=utf-8import requestsfrom lxml import etreefrom sqlalchemy import create_enginefrom sqlalchem ...
- [剑指Offer] 47.求1+2+3+...+n
题目描述 求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). [思路]用&&的短路思想来求和 ...
- [CF622F]The Sum of the k-th Powers
题目大意:给你$n,k(n\leqslant10^9,k\leqslant10^6)$,求:$$\sum\limits_{i=1}^ni^k\pmod{10^9+7}$$ 题解:可以猜测是一个$k+1 ...
- POJ 3621 Sightseeing Cows | 01分数规划
题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...