Description

四年一度的幻想乡大选开始了,最近幻想乡最大的问题是很多来历不明的妖
怪涌入了幻想乡,扰乱了幻想乡昔日的秩序。但是幻想乡的建制派妖怪(人类)
博丽灵梦和八云紫等人整日高谈所有妖怪平等,幻想乡多元化等等,对于幻想乡
目前面临的种种大问题却给不出合适的解决方案。
风间幽香是幻想乡里少有的意识到了问题的严重性的大妖怪。她这次勇敢的
站了出来参加幻想乡大选。提出包括在幻想乡边境建墙(并让人类出钱),大力
开展基础设施建设挽回失业率等一系列方案,成为了大选年出人意料的黑马并顺
利的当上了幻想乡的大统领。
幽香上台以后,第一项措施就是要修建幻想乡的公路。幻想乡有 N 个城市,
之间原来没有任何路。幽香向选民承诺要减税,所以她打算只修 N- 1 条路将
这些城市连接起来。但是幻想乡有正好 N- 1 个建筑公司,每个建筑公司都想
在修路的过程中获得一些好处。
虽然这些建筑公司在选举前没有给幽香钱,幽香还是打算和他们搞好关系,
因为她还指望他们帮她建墙。所以她打算让每个建筑公司都负责一条路来修。
每个建筑公司都告诉了幽香自己有能力负责修建的路是哪些城市之间的。所
以幽香打算选择 N-1 条能够连接幻想乡所有城市的边,然后每条边都交给一
个能够负责该边的建筑公司修建,并且每个建筑公司都恰好修一条边。
幽香现在想要知道一共有多少种可能的方案呢?两个方案不同当且仅当它
们要么修的边的集合不同,要么边的分配方式不同。

Input

第一行包含一个正整数 N(N<=17), 表示城市个数。
接下来 N-1 行,其中第 i行表示第 i个建筑公司可以修建的路的列表:
以一个非负数mi 开头,表示其可以修建 mi 条路,接下来有mi 对数,
每对数表示一条边的两个端点。其中不会出现重复的边,也不会出现自环。

Output

仅一行一个整数,表示所有可能的方案数对 10^9 + 7 取模的结果。
 

Sample Input

4
2 3 2 4 2
5 2 1 3 1 3 2 4 1 4 3
4 2 1 3 2 4 1 4 2

Sample Output

17
 
和ZJOI小星星很像啊。
考虑容斥原理,设A(x)表示x公司参与修建的方案集合,那么答案等价于求|A(1)∩A(2)∩……∩A(n)|,容斥转化成并集形式,然后用MatrixTree定理计算即可。
实际复杂度为O(N^3*2^N)。
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int maxn=20;
const int mod=1000000007;
typedef ll Matrix[maxn][maxn];
void gcd(ll a,ll b,ll& x,ll& y) {
if(!b) x=1,y=0;
else gcd(b,a%b,y,x),y-=x*(a/b);
}
ll getinv(ll a) {
ll b=mod,x,y;gcd(a,b,x,y);
return (x+mod)%mod;
}
Matrix B;
ll gauss(Matrix A,int n) {
ll ans=1;
rep(i,0,n-1) {
int r=i;
rep(j,i+1,n-1) if(abs(A[r][i])<abs(A[j][i])) r=j;
if(r!=i) ans*=-1,swap(A[r],A[i]);
ll inv=getinv(A[i][i]);
rep(k,0,n-1) if(i!=k)
dwn(j,n-1,i) A[k][j]=(A[k][j]-A[k][i]*A[i][j]%mod*inv%mod+mod)%mod;
}
rep(i,0,n-1) (ans*=A[i][i])%=mod;
return (ans+mod)%mod;
}
struct Company {
int m,u[maxn*maxn],v[maxn*maxn];
}A[maxn];
int main() {
int n=read();
rep(i,0,n-2) dwn(j,A[i].m=read(),1) A[i].u[j]=read(),A[i].v[j]=read();
ll ans=0;
rep(S,0,(1<<n-1)-1) {
int cnt=0;
rep(i,0,n-1) rep(j,0,n-1) B[i][j]=0;
rep(i,0,n-2) if(S>>i&1) {
cnt++;
rep(j,1,A[i].m) {
int u=A[i].u[j]-1,v=A[i].v[j]-1;
B[u][u]++;B[v][v]++;B[u][v]--;B[v][u]--;
}
}
rep(i,0,n-1) rep(j,0,n-1) (B[i][j]+=mod)%=mod;
if(n-1-cnt&1) (ans-=gauss(B,n-1))%=mod;
else (ans+=gauss(B,n-1))%=mod;
}
printf("%lld\n",(ans+mod)%mod);
return 0;
}

  

BZOJ4596: [Shoi2016]黑暗前的幻想乡的更多相关文章

  1. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  2. 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理

    [BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...

  3. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  4. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  5. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  6. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  7. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  8. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  9. BZOJ4596:[SHOI2016]黑暗前的幻想乡——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4596 https://www.luogu.org/problemnew/show/P4336#su ...

随机推荐

  1. JS函数运行在它们被定义的作用域内,而不是它们被执行的作用域内

    一个函数的作用域并不会因为被另一个函数调用而拓展,取得另一个函数的作用域: function show(name){ alert(name) } function show2(){ var name= ...

  2. Mongo基础使用,以及在Express项目中使用Mongoose

    MongoDB的基本使用 MongoDB特点: 使用BSON存储数据 支持相对丰富的查询操作(相对其他nosql数据库) 支持索引 副本集(支持多个实例/多个服务器运行同个数据库) 分片(数据库水平扩 ...

  3. 前端JS常用字符串处理实例

    字符串处理常常用在处理服务器回传的数据.动态拼接生成html等,是前端面试的必考题. 我觉得字符串处理这种常用到的,一定要了然于心,不然用到时急急忙忙去翻手册费半天. 入正题,首先提出平常遇到的几个需 ...

  4. sz rz SecureCRT

    yum install lszrz apt-get install lszrz wget http://down1.chinaunix.net/distfiles/lrzsz-0.12.20.tar. ...

  5. Vuejs学习笔记1

    首次写vue可能会出现:[Vue warn]: Cannot find element: #app 这是因为你的js在html页面头部引入的原因,自定义js文件要最后引入,因为要先有元素id,vue才 ...

  6. Python之Web框架

    Python之Web框架: 一.  Web框架的本质: 对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. #!/usr/bin/env pyth ...

  7. web项目中各种路径的获取

    以工程名为/DemoWeb为例: 访问的jsp为:http://localhost:8080/DemoWeb/test/index.jsp 1 JSP中获得当前应用的相对路径和绝对路径 (1)得到工程 ...

  8. Spring——集成JPA

    配置文件如下:<applicationContext.xml> <?xml version="1.0" encoding="UTF-8"?&g ...

  9. Jenkins+Maven+SVN快速搭建持续集成环境

    http://www.cnblogs.com/sunzhenchao/archive/2013/01/30/2883289.htmlhttp://blog.csdn.net/pein_zero/art ...

  10. JS 数据类型转换

    JS 数据类型转换 方法主要有三种 转换函数.强制类型转换.利用js变量弱类型转换. 1. 转换函数: js提供了parseInt()和parseFloat()两个转换函数.前者把值转换成整数,后者把 ...