题目链接

BZOJ2659

题解

真没想到,,

观察式子

\[\sum\limits_{k = 1}^{\frac{p - 1}{2}} \lfloor \frac{kq}{p} \rfloor
\]

有没有想到斜率?

如果构造函数

\[y = \frac{q}{p}x
\]

那么该式子的含义就是直线在\(x \in [1,\frac{p - 1}{2}]\)下方的整点数

容易发现另一条直线是其反函数,所以它们的点可以补成一个矩形

而且题目保证\(p,q\)为质数,除非\(p,q\)相等,否则直线上是不会有整点的

所以

\[ans = \frac{(p - 1)(q - 1)}{4}
\]

当\(p = q\)时,\(ans\)要加上\(\frac{p - 1}{2}\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL p,q;
int main(){
p = read(); q = read();
LL ans = p / 2 * (q / 2);
if (p == q) ans += p / 2;
printf("%lld\n",ans);
return 0;
}

BZOJ2659 [Beijing wc2012]算不出的算式 【数形结合】的更多相关文章

  1. BZOJ2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 668  Solved: 366[Submit] ...

  2. BZOJ2659: [Beijing wc2012]算不出的算式(数学)

    Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1575  Solved: 939[Submit][Status][Discuss] Descriptio ...

  3. bzoj 2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MB Description 算不出的算式背景:曾经有一个老掉牙的游 ...

  4. 2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 757  Solved: 425[Submit] ...

  5. 【bzoj2659】[Beijing wc2012]算不出的算式 数论

    题目描述 求,其中p和q是奇质数. 输入 只有一行,两个奇质数,分别表示p,q. 输出 一个数,表示算式结果. 样例输入 5 样例输出 6 题解 数论 神TM数学结论题... 当$p\neq q$时, ...

  6. 2659: [Beijing wc2012]算不出的算式 - BZOJ

    最近有点颓废,刷水题,数学题(根本不会做啊) 题意:求 q,p是两个奇质数 网上题解就直接说是几何意义,问了别人才知道 我们在坐标轴上画出来就是在线段y=(q/p)x下方的格点和y=(p/q)x下方的 ...

  7. [Beijing wc2012]算不出的算式

    OJ题号:BZOJ2659 思路:数学. 建立平面直角坐标系.在第一象限作直线y=qx/p,易得Σ[kq/p]即为当x<(p/2)时,直线下方(包括直线)的整点数:Σ[kp/q]为当y<( ...

  8. 【BZOJ】2659: [Beijing wc2012]算不出的算式

    题意 给两个奇质数\(p, q(p, q < 2^{31})\),求\(\sum_{k=1}^{\frac{p-1}{2}} \left \lfloor \frac{kq}{p} \right ...

  9. [BZOJ2659][WC2012]算不出的算式(几何)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2659 分析:很巧的想法,原式的值就是y=q/p x这条直线的下面和左边的点的个数.处理 ...

随机推荐

  1. Ajax中post请求和get请求的区别

    首先提出两点Post比Get大的不同地方 1.post请求浏览器每次不会缓存,每次都会重新请求,而get请求不要缓存的时候,需要手动设置 写上xhr.setRequestHeader("If ...

  2. Python拼接字符串的7种方法

    1.直接通过+操作: s = 'Python'+','+'你好'+'!'print(s) 打印结果: Python,你好! 2.通过join()方法拼接: 将列表转换成字符串 strlist=['Py ...

  3. katalon系列四:使用Katalon Studio录制WEB自动化脚本

    一.点击图1工具栏中的+号,选Test Case,新建一个用例. 图1 二.接着点图1录制按钮(地球上有个红点图标),打开的Web Recorder中URL输入百度的地址,浏览器选择Chrome,点击 ...

  4. 【SpringCloud】 第九篇: 服务链路追踪(Spring Cloud Sleuth)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  5. 第六章 高级I/O函数

    第六章 高级I/O函数 6.1 pipe函数 即管道函数,用于进程间的通信. #include<unistd.h> int pipe(int fd[2]); // fd:filedes / ...

  6. lintcode433 岛屿的个数

    岛屿的个数 给一个01矩阵,求不同的岛屿的个数. 0代表海,1代表岛,如果两个1相邻,那么这两个1属于同一个岛.我们只考虑上下左右为相邻. 您在真实的面试中是否遇到过这个题? Yes 样例 在矩阵: ...

  7. UVa 1585 - Score - ACM/ICPC Seoul 2005 解题报告 - C语言

    1.题目大意 给出一个由O和X组成的字符串(长度为80以内),每个O的得分为目前连续出现的O的数量,X得分为0,统计得分. 2.思路 实在说不出了,这题没过脑AC的.直接贴代码吧.=_= 3.代码 # ...

  8. Eclipse 安装SVN、Maven插件

    1先安装subeclipse插件就是svn svn - http://subclipse.tigris.org/update_1.6.x 我这里是灰色的说明我安装过了这里只是截图说明下,我就不继续安装 ...

  9. php常用方法汇总

    xml格式转成array <?php $str='<xml><node><![CDATA[content]]></node></xml> ...

  10. 2017-2018-2 20172323 『Java程序设计』课程 结对编程练习_四则运算 2

    相关过程截图 关键代码解释 将运算式分开的代码 String[] result = num.split("\\s"); 将输入的num以空格为间隔符号分开,将每一个间隔开的字符存入 ...