http://www.lydsy.com/JudgeOnline/problem.php?id=2458

Description

Xaviera现在遇到了一个有趣的问题。
平面上有N个点,Xaviera想找出周长最小的三角形。
由于点非常多,分布也非常乱,所以Xaviera想请你来解决这个问题。
为了减小问题的难度,这里的三角形也包括共线的三点。

Input

第一行包含一个整数N表示点的个数。
接下来N行每行有两个整数,表示这个点的坐标。

Output

输出只有一行,包含一个6位小数,为周长最短的三角形的周长(四舍五入)。

Sample Input

4
1 1
2 3
3 3
3 4

Sample Output

3.414214

HINT

100%的数据中N≤200000。

————————————————

哇作为练手平面分治的题我好高兴,一次A了。

不过最开始怀疑自己的思路有问题于是查了题解……然后发现竟然是对的。

额……

复述一下,和平面分治差不多,将solve函数的含义改为当前区间内最小三角形的周长。

然后我们发现对于一个三角形两点之间长度最大为d/2。

所以我们在归并排序y的时候把和中轴距离d/2的点捡出来。

然后三重循环枚举搞定(同时距离d/2不要忘了)

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl INF=1e20;
const int N=;
inline int read(){
int X=,w=; char ch=;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
dl x;
dl y;
}p[N],a[N],b[N];
bool cmp(node A,node B){
return A.x<B.x;
}
inline dl dis(int i,int j){
return sqrt(pow(b[i].x-b[j].x,)+pow(b[i].y-b[j].y,));
}
dl solve(int l,int r){
if(l>=r)return INF;
int mid=(l+r)>>;
dl x0=(p[mid].x+p[mid+].x)/2.0;
dl d=min(solve(l,mid),solve(mid+,r));
int l1=l,r1=mid+,num=;
for(int i=l;i<=r;i++){
if(l1<=mid&&(r1>r||p[l1].y<p[r1].y)){
a[i]=p[l1++];
if(x0-d/<a[i].x)b[++num]=a[i];
}else{
a[i]=p[r1++];
if(a[i].x<x0+d/)b[++num]=a[i];
}
}
for(int i=l;i<=r;i++)p[i]=a[i]; for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(b[j].y-b[i].y>=d/)break;
for(int k=j+;k<=num;k++){
if(b[k].y-b[j].y>=d/)break;
d=min(d,dis(i,j)+dis(j,k)+dis(k,i));
}
}
}
return d;
}
int main(){
int n=read();
for(int i=;i<=n;i++){
p[i].x=read();
p[i].y=read();
}
sort(p+,p+n+,cmp);
printf("%.6f\n",solve(,n));
return ;
}

BZOJ2458:[BJOI2011]最小三角形——题解的更多相关文章

  1. bzoj2458: [BeiJing2011]最小三角形(分治+几何)

    题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...

  2. BZOJ2458 Beijing2011最小三角形(分治)

    类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形. 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边 ...

  3. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  4. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  5. [BZOJ2458][BeiJing2011]最小三角形(分治)

    求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...

  6. BZOJ2458: [BeiJing2011]最小三角形

    类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...

  7. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  8. BZOJ 2458 最小三角形 | 平面分治

    BZOJ 2458 最小三角形 题面 一个平面上有很多点,求他们中的点组成的周长最小的三角形的周长. 题解 跟平面最近点对差不多,也是先把区间内的点按x坐标从中间分开,递归处理,然后再处理横跨中线的三 ...

  9. BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治

    题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...

随机推荐

  1. Docker - vim安装

    在使用docker容器时,有时候里边没有安装vim,敲vim命令时提示说:vim: command not found,这个时候就需要安装vim. apt-get install vim 若提示: R ...

  2. Qt 独立运行时伴随CMD命令窗口

    用Qt写了一个小软件,在把程序release后,打包分装后,发现程序运行的时候会伴随cmd命令窗口,可把我愁怀了 不过功夫不负有心人,在老师和我网友的帮助下,终于搞完了 CONFIG:指定工程配置和编 ...

  3. Appium-测试失败后屏幕截图的

    本文参考:http://www.cnblogs.com/hexianl/p/4958556.html 使用testng测试框架进行管理测试 1.创建监听,代码如下: import io.appium. ...

  4. 前端开发工程师 - 05.产品前端架构 - 协作流程 & 接口设计 & 版本管理 & 技术选型 &开发实践

    05.产品前端架构 第1章--协作流程 WEB系统 角色定义 协作流程 职责说明 第2章--接口设计 概述 接口规范 规范应用 本地开发 第3章--版本管理 见 Java开发工程师(Web方向) - ...

  5. python切片技巧

    写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz” for x in range(101): p ...

  6. lintcode 466. 链表节点计数

    466. 链表节点计数 计算链表中有多少个节点.   样例 给出 1->3->5, 返回 3. /** * Definition of ListNode * class ListNode ...

  7. springmvc项目,浏览器报404错误的问题

    问题描述: 建立了web工程,配置pom.xml,web.xml,编写controller类,在spring-mvc-servlet.xml文件中指定开启注解和扫描的包位置<mvc:annota ...

  8. Leetcode - 461. Hamming Distance n&=(n-1) (C++)

    1. 题目链接:https://leetcode.com/problems/hamming-distance/description/ 2.思路 常规做法做完看到评论区一个非常有意思的做法.用了n&a ...

  9. 感知机(perceptron)

  10. CryptoZombies学习笔记——Lesson3

    第三课就开始深入讲解solidity编程技巧了. chapter1: 智能合约的不变性. 合约一旦部署到以太坊后,就不可更改了,所以从一方面来说,智能合约代码的安全性是如此重要,因为一旦发现你的代码里 ...