http://www.lydsy.com/JudgeOnline/problem.php?id=2458

Description

Xaviera现在遇到了一个有趣的问题。
平面上有N个点,Xaviera想找出周长最小的三角形。
由于点非常多,分布也非常乱,所以Xaviera想请你来解决这个问题。
为了减小问题的难度,这里的三角形也包括共线的三点。

Input

第一行包含一个整数N表示点的个数。
接下来N行每行有两个整数,表示这个点的坐标。

Output

输出只有一行,包含一个6位小数,为周长最短的三角形的周长(四舍五入)。

Sample Input

4
1 1
2 3
3 3
3 4

Sample Output

3.414214

HINT

100%的数据中N≤200000。

————————————————

哇作为练手平面分治的题我好高兴,一次A了。

不过最开始怀疑自己的思路有问题于是查了题解……然后发现竟然是对的。

额……

复述一下,和平面分治差不多,将solve函数的含义改为当前区间内最小三角形的周长。

然后我们发现对于一个三角形两点之间长度最大为d/2。

所以我们在归并排序y的时候把和中轴距离d/2的点捡出来。

然后三重循环枚举搞定(同时距离d/2不要忘了)

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl INF=1e20;
const int N=;
inline int read(){
int X=,w=; char ch=;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
dl x;
dl y;
}p[N],a[N],b[N];
bool cmp(node A,node B){
return A.x<B.x;
}
inline dl dis(int i,int j){
return sqrt(pow(b[i].x-b[j].x,)+pow(b[i].y-b[j].y,));
}
dl solve(int l,int r){
if(l>=r)return INF;
int mid=(l+r)>>;
dl x0=(p[mid].x+p[mid+].x)/2.0;
dl d=min(solve(l,mid),solve(mid+,r));
int l1=l,r1=mid+,num=;
for(int i=l;i<=r;i++){
if(l1<=mid&&(r1>r||p[l1].y<p[r1].y)){
a[i]=p[l1++];
if(x0-d/<a[i].x)b[++num]=a[i];
}else{
a[i]=p[r1++];
if(a[i].x<x0+d/)b[++num]=a[i];
}
}
for(int i=l;i<=r;i++)p[i]=a[i]; for(int i=;i<=num;i++){
for(int j=i+;j<=num;j++){
if(b[j].y-b[i].y>=d/)break;
for(int k=j+;k<=num;k++){
if(b[k].y-b[j].y>=d/)break;
d=min(d,dis(i,j)+dis(j,k)+dis(k,i));
}
}
}
return d;
}
int main(){
int n=read();
for(int i=;i<=n;i++){
p[i].x=read();
p[i].y=read();
}
sort(p+,p+n+,cmp);
printf("%.6f\n",solve(,n));
return ;
}

BZOJ2458:[BJOI2011]最小三角形——题解的更多相关文章

  1. bzoj2458: [BeiJing2011]最小三角形(分治+几何)

    题目链接:bzoj2458: [BeiJing2011]最小三角形 学习推荐博客:分治法编程问题之最接近点对问题的算法分析 题解:先将所有点按x值排列,然后每次将当前区间[l,r]分成左右两半递归求解 ...

  2. BZOJ2458 Beijing2011最小三角形(分治)

    类似于平面最近点对,考虑分治,即分别计算分割线两侧的最小三角形再考虑跨过线的三角形. 复杂度证明也是类似的,对于某一个点,在另一侧可能与其构成最小三角形的点在一个d*d/2的矩形内(两边之和大于第三边 ...

  3. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  4. 分治 - 计算几何 - BZOJ2458,[BeiJing2011]最小三角形

    http://www.lydsy.com/JudgeOnline/problem.php?id=2458 [BeiJing2011]最小三角形 描述 Frisk现在遇到了一个有趣的问题. 平面上有N个 ...

  5. [BZOJ2458][BeiJing2011]最小三角形(分治)

    求平面上n个点组成的周长最小的三角形. 回忆平面最近点对的做法,找到横坐标的中点mid分治到两边,合并时考虑离mid横坐标不超过当前最小值d的所有点,按y排序后暴力更新答案. 这个题也一样,先分治到两 ...

  6. BZOJ2458: [BeiJing2011]最小三角形

    类似分治最近点对的方法乱搞一下就行. #include<bits/stdc++.h> #define N 200010 #define M (s+t>>1) using nam ...

  7. bzoj-2458 2458: [BeiJing2011]最小三角形(计算几何+分治)

    题目链接: 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1101  Solved: 380 Des ...

  8. BZOJ 2458 最小三角形 | 平面分治

    BZOJ 2458 最小三角形 题面 一个平面上有很多点,求他们中的点组成的周长最小的三角形的周长. 题解 跟平面最近点对差不多,也是先把区间内的点按x坐标从中间分开,递归处理,然后再处理横跨中线的三 ...

  9. BZOJ 2458: [BeiJing2011]最小三角形 | 平面分治

    题目: 给出若干个点 求三个点构成的周长最小的三角形的周长(我们认为共线的三点也算三角形) 题解: 可以参考平面最近点对的做法 只不过合并的时候改成枚举三个点更新周长最小值,其他的和最近点对大同小异 ...

随机推荐

  1. 追书神器API

    由于自己喜欢看小说,有的时候不方便手机看的时候希望在电脑上面看,但很多网站有广告啊,于是封装了套手机版的追书神器API 目前只做了搜索 详情 书评 换源 正文 调用方式: //搜索小说 var sea ...

  2. python删除文本中的所有空字符

    import re import os input_path = 'G:/test/aa.json' output_path ='G:/test/bb.json' with open(input_pa ...

  3. WeTest功能优化第1期:截图960px,云真机映射功能了解

    第1期功能优化目录 [全线产品测试截图优化]安卓机型测试截图分辨率上升至960px [云真机新增Android 9]最新安卓系统,等你pick [云真机新增键盘映射功能]电脑键盘码字,云真机同步显示  ...

  4. 多台服务器下同步文件夹数据(rsync+inotify)

    网上有很多讲解rsync+inotify的教程,我就先贴出一个来大家去看吧,基本都是类似的. http://www.jb51.net/article/57011.htm 我就强调几点,按照上面的方法配 ...

  5. 手机APP测试如何进行兼容性测试?

    Android App兼容性测试是一个比较重要的App评价内容,实际上兼容性测试不仅仅和测试人员相关,在开发阶段就应当着重考虑,因为兼容性问题是除了实现App本身要求的功能后,必须要关注.而且至关重要 ...

  6. 第三模块:面向对象&网络编程基础 第3章 选课系统作业讲解

    01-选课系统作业讲解1 02--选课系统作业讲解2 03-选课系统作业讲解3 04--选课系统作业讲解4 01-选课系统作业讲解1 02--选课系统作业讲解2 03-选课系统作业讲解3 04--选课 ...

  7. 【转】Buff机制及其实际运用

    转自 http://bbs.gameres.com/forum.php?mod=viewthread&tid=215027 首先我想说的是,这是一套机制,并不是单独的一个系统,所谓机制就是一种 ...

  8. c#,mysql,读取乱码问题

    1.首先保证数据库的表是UTF8类型:数据库是否是utf8无关紧要: 2.c#连接数据库语句添加“charset=utf8”一句:.exe.config是否添加这一句也无关紧要: 3.访问数据库数据用 ...

  9. 福大软工1816:Alpha(10/10)

    Alpha 冲刺 (10/10) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.和愈明.韫月一起对接 2 ...

  10. ACM 第九天

    动态规划1 动态规划问题是面试题中的热门话题,如果要求一个问题的最优解(通常是最大值或者最小值),而且该问题能够分解成若干个子问题,并且小问题之间也存在重叠的子问题,则考虑采用动态规划. 1.LLS ...