四方定理

数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示。

我们可以通过计算机验证其在有限范围的正确性。

import java.*;
import java.util.*;
public class Main121 { public static int f(int n, int a[], int idx) {
if (n==0) // 填空1
return 1;
if (idx == 4)
return 0; for (int i = (int) Math.sqrt(n); i >= 1; i--) {
a[idx] = i; if (f(n-i*i, a, idx+1) == 1) // 填空2
return 1;
}
return 0;
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
for (;;) {
int number;
System.out.printf("输入整数(1~10亿):");
number = scan.nextInt();
int a[] = { 0, 0, 0, 0 };
int r = f(number, a, 0);
System.out.printf("%s: %d %d %d %d\n", r==1?"有结果":"无结果", a[0], a[1], a[2], a[3]);
}
} }

四方定理(递归) --java的更多相关文章

  1. java实现第二届蓝桥杯四方定理

    四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...

  2. P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  3. 洛谷——P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...

  4. 洛谷 P1586 四方定理

    P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=1​2​​+2​2​​+2​ ...

  5. 洛谷P1586 四方定理

    题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...

  6. 归并排序(非递归,Java实现)

    归并排序(非递归):自底向上 public class MergeSort { /** * @param arr 待排序的数组 * @param left 本次归并的左边界 * @param mid ...

  7. 字符串逆转(递归和非递归java)

    package 乒乒乓乓; public class 递归逆转字符串 {    //非递归逆转    public static String reverse(String s)    {       ...

  8. 二分查找(非递归JAVA)

    庞果网编程英雄会上做的一道题:二分查找(非递归),和大家分享一下: public class BinarySearchClass { public static int binary_search(i ...

  9. 数据结构--汉诺塔递归Java实现

    /*汉诺塔递归 * 1.将编号0-N-1个圆盘,从A塔座移动到B上面 * 2.将编号N的1个圆盘,从A移动到C上面 * 3.最后将B上面的N-1个圆盘移动到C上面 * 注意:盘子的编号从上到下1-N ...

随机推荐

  1. .NET C# 创建WebService服务简单的例子

    Web service是一个基于可编程的web的应用程序,用于开发分布式的互操作的应用程序,也是一种web服务 WebService的特性有以下几点: 1.使用XML(标准通用标记语言)来作为数据交互 ...

  2. Go语言之defer关键字

    类似于java中的finally, 在函数返回来执行, 它用来保证函数一定会作一些事情. package main import "fmt" func main() { defer ...

  3. 为什么dbms_metadata.get_ddl显示不全?

    http://bi.dataguru.cn/thread-335433-1-1.html

  4. Elasticsearch集群

    详细Elasticsearch安装: https://www.cnblogs.com/littlehb/p/8406378.html 安装之前需先优化内核: https://www.cnblogs.c ...

  5. CentOS 6.9 NFS安装和配置

    1.安装依赖包 yum install nfs-utils rpcbind -y 2.开机启动 chkconfig rpcbind on chkconfig nfs on 3.创建一个共享目录和加权限 ...

  6. Lazy<T> 延迟加载

    namespace ConsoleAppTest { class Program { static void Main(string[] args) { Lazy<Student> stu ...

  7. LeetCode高频148错题记录

    3. Max Points on a Line 共线点个数3种解法 思路一:思考如何确定一条直线,两点法,确定斜率后带入一点.有三种情况,1. 两点重合,2. 斜率不存在,3. 正常算,依次以每个点为 ...

  8. python之工作目录和文件引用

    1.参考 如何获得Python脚本所在目录的位置 Python 相对导入与绝对导入 还没细看 2.不考虑exe打包 sys.path[0] #顶层运行脚本的绝对目录 os.path.split(os. ...

  9. Flink的容错

    checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 ...

  10. Noj - 在线强化训练4

    状态 题号 竞赛题号 标题 × 1092 A 童年的回忆——计算24 × 1145 B 求图像的周长 × 1144 C 农场灌溉问题 × 1202 D 数独游戏 × 1243 E 循环赛日程表 × 1 ...