【CV】ICCV2015_Unsupervised Learning of Spatiotemporally Coherent Metrics
Unsupervised Learning of Spatiotemporally Coherent Metrics
Note here: it's a learning note on the topic of unsupervised learning on videos, a novel work published by Yann LeCun's group.
Link: http://arxiv.org/pdf/1412.6056.pdf
Motivation:
Temporal coherence is a form of weak supervision, which they exploit to learn generic signal representations that are stable with respect to the variability in natural video, including local deformations.
This induces the assumption that data samples that are temporal neighbors are also likely to be neighbors in the latent space.
(The invariant features in temporal sequences are also called slow features.)
Proposed Model:
The loss function based on temporal coherence is shown below:
The first term denotes neighbor frames should be similar to maintain the slowness, but in case of the network learns a constant mapping, they add the second term to force frames at different time steps to be separated by at least a distance of m-units in feature space.
However, the second term only provides the discriminative criteria on pairwise distances in the feature space. This paper argues this discriminative constraint is too weak. Thus, they introduce a reconstruction term not only prevents the constant solution but also acts to explicitly preserve information about the input. So the new loss function is:
(The first term is reconstruction term, the second one is to train slow features. And \(a|h_{r}|\) denotes sparsity penalty term.)
The overall pipeline is shown below:
Tricks:
They leverage several intuitions and tricks in the paper, but as the limitation of knowledge in this field, I can just dive into one of these.
Pooling plays an important role in the architecture. Training through a local pooling operator enforces a local topology on the hidden activations, inducing units that are pooled together to learn complimentary features.
Also, pooling in space and across features when we use convolutional architecture can produce more invariant features.
【CV】ICCV2015_Unsupervised Learning of Spatiotemporally Coherent Metrics的更多相关文章
- 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...
- 【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction
Unsupervised Visual Representation Learning by Context Prediction Note here: it's a learning note on ...
- 【RS】CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation for Deep Collaborative Filtering-CoupledCF:在推荐系统深度协作过滤中学习显式和隐式的用户物品耦合
[论文标题]CoupledCF: Learning Explicit and Implicit User-item Couplings in Recommendation for Deep Colla ...
- 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤
[论文标题]List-wise learning to rank with matrix factorization for collaborative filtering (RecSys '10 ...
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文阅读笔记(三)【AAAI2017】:Learning Heterogeneous Dictionary Pair with Feature Projection Matrix for Pedestrian Video Retrieval via Single Query Image
Introduction (1)IVPR问题: 根据一张图片从视频中识别出行人的方法称为 image to video person re-id(IVPR) 应用: ① 通过嫌犯照片,从视频中识别出嫌 ...
- 【转载】Deep Learning(深度学习)学习笔记整理
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...
- 【转】Deep Learning(深度学习)学习笔记整理系列之(八)
十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征. 高 ...
- 【CV】ICCV2015_Describing Videos by Exploiting Temporal Structure
Describing Videos by Exploiting Temporal Structure Note here: it's a learning note on the topic of v ...
随机推荐
- Hbase-2.0.0_01_安装部署
该文章是基于 Hadoop2.7.6_01_部署 进行的 1. 主机规划 主机名称 IP信息 内网IP 操作系统 安装软件 备注:运行程序 mini01 10.0.0.11 172.16.1.11 C ...
- ccf-20161203--权限查询
这题我的思路是将用户直接与他的权限联系起来.比如: 用户 角色 权限 Alice hr crm:2直接转变为:Alice: crm:2 题目与代码如下: 问题描述 试题编号: 201612-3 试题名 ...
- 转://点评Oracle11g新特性之动态变量窥视
1. 11g之前的绑定变量窥视 我们都知道,为了可以让SQL语句共享运行计划,oracle始终都是强调在进行应用系统的设计时,必须使用绑定变量,也就是用一个变量来取代原来出如今SQL语句里的字面值.比 ...
- Arduino IDE for ESP8266 项目(3)创建AP+STA
官网API:http://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html STA (客户端)手机连接路由器 S1 *简 ...
- .net Parallel并行使用注意事项
因项目响应过慢,代码优化空间不大,在暂时无法调整系统架构的情况下,只有使用.NET中的TPL解决一些模块耗时过多的问题.但在使用过程中也碰到了一些问题,现在把它写下来,用于备忘. 1. Paralle ...
- java 实现serialVersionUID
文章转自 https://www.cnblogs.com/duanxz/p/3511695.html 作用 serialVersionUID适用于Java的序列化机制.简单来说,Java的序列化机制 ...
- 关于mysql中字符集和排序规则说明
文章转自 http://blog.csdn.net/smallSBoy/article/details/52997138 数据库需要适应各种语言和字符就需要支持不同的字符集(Character Set ...
- tomcat运行超时问题解决
之前一直懒得记录,不过最近觉得还是记录一下好一些. 由于项目过于庞大启动时间比较长,而tomcat默认超时时间为45秒,很显然对于一个庞大的项目而言是远远不够的. 错误信息如下所示: Server T ...
- Git-本地项目和远程项目关联
此处记录将本地项目与码云仓库关联步骤 1. 本地 Git 配置 配置一下一些基本的信息 $ git config--global user.name "Your Name" $ g ...
- Objective-C 锁
多线程在Objective-C项目中占有很大的比重,它能提高程序的运行效率,但也因此带来线程安全问题.而锁就是解决线程安全问题最常用的武器. 锁有很多种. 1.NSLock,非递归锁 NSLock * ...