Python数据分析Numpy库方法简介(二)
数据分析图片保存:vg
1.保存图片:plt.savefig(path)
2.图片格式:jpg,png,svg(建议使用,不失真)
3.数据存储格式: excle,csv
csv介绍
csv就是用逗号隔开的纯文本信息!!会以表格的信息打开
矩阵生成的相关属性
impor numpy as np #导入模块
a = np.array([1,2,3,4,5]) #一维矩阵
a = np.array([[1,2,3],[4,5,6]]) #二维矩阵
np.eye(3) #单位矩阵
np.diag(np.array([1,2,3,4])) #对角矩阵
a.size #矩阵的总数量
a.shape #矩阵的行列
a.ndim #矩阵的维度
a.dtype #矩阵的数据类型
矩阵的基本操作
#基本操作
import numpy as np
a = np.arange(1,10).reshape(3,3)
b = np.arange(11,20).reshape(3,3)
a+b/np.add(a,b)
a[a>5] #判断提出大于5的数据
a**2
#自带的数学函数
a.max() #最大值
a.min() #最小值
a.mean() #平均数
a.sum() #和
a.sum(axis=0\1)#每列\行的和
a.std() #标准差反应是数据和平均值的离散情况
a.sqrt() #平方根
np.where(a<80,0,90) #三目 如果小于80替换为0,否则替换成90
切片灵活操作数据 (重点)
#切片灵活操作数据
import numpy as np
a = np.arange(1,10).reshape(3,3)
"""
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
"""
a[:,1] #所有行的第二列数据 array([2, 5, 8])
a[:2,:2] #前两行的前两列数据array([[1, 2][4,5]])
a[0].max() #第一行的最大数据 3
a[0][1] #第一行的第二个数据 2
Numpy读文档
格式(一般不使用)
a = np.genfromtxt(path,delimiter=',',dtype=str,skip_header=1)
Ndarray和list的区别
Ndarray创建时有固定的大小(list可动态增加)
Ndarray元素都具有相同的数据类型
Ndarray内置大量的数学函数可进行高等数学相关操作(高效)
Ndarray支持矢量化(向量化)--简洁,高效,更接近标准数学
比如:二维list每个元素相乘,需要双层循环
a+b ===>矩阵自动实现每个对应元素相加
列表 a +b ===> 列表连接
算法汇总
np.std()标准差 --------->反应与平均值的离散情况
正态分布:
也叫钟行图,高斯分布
反应是集中的分布趋势,峰值周围是分布数据量最多的
np.random.randn(3,3)测试的符合正太分布的数据
反应的现实情况,种群智力水平,身高,体重,医学领域.
点阵积:dot()
待讲................
Python数据分析Numpy库方法简介(二)的更多相关文章
- Python数据分析Numpy库方法简介(一)
Numpy功能简介: 1.官网:www.numpy.org 2.特点:(1)高效的多维矩阵/数组; (2);复杂的广播功能 (3):有大量的内置数学统计函数 矩阵(多维数组): 一维数组: ([ 值 ...
- Python数据分析Numpy库方法简介(四)
Numpy的相关概念2 副本和视图 副本:复制 三种情况属于浅copy 赋值运算 切片 视图:链接,操作数组是,返回的不是副本就是视图 c =a.view().创建a的视图/影子和切片一样都是浅cop ...
- Python数据分析Numpy库方法简介(三)
补充: np.ceil()向上取整 3.1向上取整是4 np.floor()向下取整 数组名.resize((m,n)) 重置行列 基础操作 np.random.randn()符合正态分布(钟行/高斯 ...
- Python数据分析Pandas库方法简介
Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...
- Python数据分析numpy库
1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...
- Python数据分析-Numpy数值计算
Numpy介绍: NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能: 1)ndarray,一个多维数组结构,高效且节省空间 2)无需循环对整组 ...
- window7安装python的xgboost库方法
window7安装python的xgboost库方法 1.下载xgboost-master.zip文件,而不是xgboost-0.4a30.tar.gz,xgboost-0.4a30.tar.gz是更 ...
- python数据分析Numpy(二)
Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab ...
- Python数据分析——numpy基础简介
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:基因学苑 NumPy(Numerical Python的简称)是高性 ...
随机推荐
- 为何GET只发一次TCP连接,POST发两次TCP连接
GET和POST是HTTP请求的两种基本方法,要说他们的区别,接触过WEB开发的人都能说出一二. 最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. 你可能自己 ...
- Spring 学习笔记(十)渲染 Web 视图 (Apache Tilesa 和 Thymeleaf)
使用Apache Tiles视图定义布局 为了在Spring中使用Tiles,需要配置几个bean.我们需要一个TilesConfigurer bean,它会负责定位和加载Tile定义并协调生成Til ...
- HTML使用CSS样式的方法
在html网页中引入css样式表主要有一下四种方法 1.行内引入 <p ></p> 2.嵌入式 <style type="text/css"> ...
- 【CF660E】Different Subsets For All Tuples 结论题
[CF660E]Different Subsets For All Tuples 题意:对于所有长度为n,每个数为1,2...m的序列,求出每个序列的本质不同的子序列的数目之和.(多个原序列可以有相同 ...
- asp.net mvc 通过StyleBundle添加样式后,没有作用
在App_Start/BundleConfig配置 导入bootstrap,但不起作用,代码如下: bundles.Add(new StyleBundle("~/Content/bootst ...
- Centos 7 更换yum源
Centos 7 更换源 yum clean all wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/ ...
- Python3.6连接mysql(一)
初次学习python,因为python连接mysql的时候,需要安装mysql驱动模块 之前按照廖雪峰网站上的方法安装mysql驱动的方法: MySQL官方提供了mysql-connector-pyt ...
- 9、socket.io,websocket 前后端实时通信,(聊天室的实现)
websocket 一种通信协议 ajax/jsonp 单工通信 websocket 全双工通信 性能高 速度快 2种方式: 1.前端的websocket 2.后端的 socket.io 一.后端so ...
- Oracle课程档案,第十二天
死锁是由于两个对象在拥有一份资源的情况下申请另一份资源, 而另一份资源恰好又是这两对象正持有的,导致两对象无法完成操作,且所持资源无法释放. 阻塞是由于资源不足引起的排队等待现象. unso:撤销 c ...
- Oracle课程档案,第八天
存储管理 查询块的大小:show parameter db_block_size database:数据库 tablespace:表空间 datafile:数据文件 segments:段 extent ...