数据分析图片保存:vg

  1.保存图片:plt.savefig(path)

  2.图片格式:jpg,png,svg(建议使用,不失真)

  3.数据存储格式: excle,csv

csv介绍

  csv就是用逗号隔开的纯文本信息!!会以表格的信息打开

矩阵生成的相关属性

    

  impor numpy as np #导入模块

  a = np.array([1,2,3,4,5]) #一维矩阵
  a = np.array([[1,2,3],[4,5,6]]) #二维矩阵
  np.eye(3) #单位矩阵
  np.diag(np.array([1,2,3,4])) #对角矩阵
  a.size #矩阵的总数量
  a.shape #矩阵的行列
  a.ndim #矩阵的维度
  a.dtype #矩阵的数据类型

矩阵的基本操作

      

  #基本操作
  import numpy as np
  a = np.arange(1,10).reshape(3,3)
  b = np.arange(11,20).reshape(3,3)
  a+b/np.add(a,b)
  a[a>5] #判断提出大于5的数据
  a**2
  #自带的数学函数
  a.max() #最大值
  a.min() #最小值
  a.mean() #平均数
  a.sum() #和
  a.sum(axis=0\1)#每列\行的和
  a.std() #标准差反应是数据和平均值的离散情况
  a.sqrt() #平方根
  np.where(a<80,0,90) #三目 如果小于80替换为0,否则替换成90

切片灵活操作数据 (重点) 

  #切片灵活操作数据
  import numpy as np
  a = np.arange(1,10).reshape(3,3)
  """
  array([[1, 2, 3],
  [4, 5, 6],
    [7, 8, 9]])
  """
  a[:,1] #所有行的第二列数据 array([2, 5, 8])
  a[:2,:2] #前两行的前两列数据array([[1, 2][4,5]])
  a[0].max() #第一行的最大数据 3
  a[0][1] #第一行的第二个数据 2

Numpy读文档

格式(一般不使用)
  • a = np.genfromtxt(path,delimiter=',',dtype=str,skip_header=1)

Ndarray和list的区别

  • Ndarray创建时有固定的大小(list可动态增加)

  • Ndarray元素都具有相同的数据类型

  • Ndarray内置大量的数学函数可进行高等数学相关操作(高效)

  • Ndarray支持矢量化(向量化)--简洁,高效,更接近标准数学

    • 比如:二维list每个元素相乘,需要双层循环

    • a+b ===>矩阵自动实现每个对应元素相加

    • 列表 a +b ===> 列表连接

算法汇总

  1. np.std()标准差 --------->反应与平均值的离散情况

  2. 正态分布:

    • 也叫钟行图,高斯分布

    • 反应是集中的分布趋势,峰值周围是分布数据量最多的

    • np.random.randn(3,3)测试的符合正太分布的数据

    • 反应的现实情况,种群智力水平,身高,体重,医学领域.

  3. 点阵积:dot()

    • 待讲................

Python数据分析Numpy库方法简介(二)的更多相关文章

  1. Python数据分析Numpy库方法简介(一)

    Numpy功能简介: 1.官网:www.numpy.org 2.特点:(1)高效的多维矩阵/数组; (2);复杂的广播功能 (3):有大量的内置数学统计函数 矩阵(多维数组): 一维数组:  ([ 值 ...

  2. Python数据分析Numpy库方法简介(四)

    Numpy的相关概念2 副本和视图 副本:复制 三种情况属于浅copy 赋值运算 切片 视图:链接,操作数组是,返回的不是副本就是视图 c =a.view().创建a的视图/影子和切片一样都是浅cop ...

  3. Python数据分析Numpy库方法简介(三)

    补充: np.ceil()向上取整 3.1向上取整是4 np.floor()向下取整 数组名.resize((m,n)) 重置行列 基础操作 np.random.randn()符合正态分布(钟行/高斯 ...

  4. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

  5. Python数据分析numpy库

    1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...

  6. Python数据分析-Numpy数值计算

    Numpy介绍: NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能: 1)ndarray,一个多维数组结构,高效且节省空间 2)无需循环对整组 ...

  7. window7安装python的xgboost库方法

    window7安装python的xgboost库方法 1.下载xgboost-master.zip文件,而不是xgboost-0.4a30.tar.gz,xgboost-0.4a30.tar.gz是更 ...

  8. python数据分析Numpy(二)

    Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab ...

  9. Python数据分析——numpy基础简介

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:基因学苑 NumPy(Numerical Python的简称)是高性 ...

随机推荐

  1. 【中间件安全】WebSphere安全加固规范

    1. 适用情况 适用于使用WebSphere进行部署的Web网站. 2. 技能要求 熟悉WebSphere安装部署,熟悉WebSphere常见漏洞利用方式,并能针对站点使用WebSphere进行安全加 ...

  2. java高级---->Java观察者的原理

    观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象.这个主题对象在状态上发生变化时,会通知所有观察者对象,让他们能够自动更新自己.今天我们通过模拟按钮的处理事件来深入Java ...

  3. unity(2017.3) C# 常用API

    1. 获取物体的 GetComponent playerRigidbody = GetComponent<Rigidbody> (); GetComponent<Animatro&g ...

  4. jquery验证规则

    <!DOCTYPE html><html><head><meta charset="utf-8"><title>菜鸟教程 ...

  5. 关于 systemctl --user status 报错的问题

    关于 systemctl --user enable mpd 报错: Failed to connect to bus: No such file or directory 因为arch脚本中,sys ...

  6. weblogic反序列化漏洞CVE-2018-2628-批量检测脚本

    #coding=utf-8 import socket import time import re,os,sys,codecs type = 'utf-8' reload(sys) sys.setde ...

  7. mysql批量更新的两种方式效率试验<二>

    Mysql两种批量更新的对比 简介: mysql搭载mybits框架批量更新有两种方式,一种是在xml中循环整个update语句,中间以‘:’隔开,还有一种是使用case when 变相实现批量更新, ...

  8. ubuntu安装notepad++

    sudo add-apt-repository ppa:notepadqq-team/notepadqq sudo apt-get update sudo apt-get install notepa ...

  9. day13 十三、迭代器、生成器、枚举对象

    def my_generator(): print(1111) yield '结果1' print(2222) yield '结果2' print(3333) yield '结果3' print(44 ...

  10. fiddler 修改

    很多新手学习fiddler抓包的同学们都会对https网站抓包难或者抓不起来的问题无所适从,想寻求解决办法,没问题,这节课就来解决你的疑问! 最典型的网站就是目前的百度网站了,百度在近些年采用了htt ...