Python数据分析Numpy库方法简介(二)
数据分析图片保存:vg
1.保存图片:plt.savefig(path)
2.图片格式:jpg,png,svg(建议使用,不失真)
3.数据存储格式: excle,csv
csv介绍
csv就是用逗号隔开的纯文本信息!!会以表格的信息打开
矩阵生成的相关属性
impor numpy as np #导入模块
a = np.array([1,2,3,4,5]) #一维矩阵
a = np.array([[1,2,3],[4,5,6]]) #二维矩阵
np.eye(3) #单位矩阵
np.diag(np.array([1,2,3,4])) #对角矩阵
a.size #矩阵的总数量
a.shape #矩阵的行列
a.ndim #矩阵的维度
a.dtype #矩阵的数据类型
矩阵的基本操作
#基本操作
import numpy as np
a = np.arange(1,10).reshape(3,3)
b = np.arange(11,20).reshape(3,3)
a+b/np.add(a,b)
a[a>5] #判断提出大于5的数据
a**2
#自带的数学函数
a.max() #最大值
a.min() #最小值
a.mean() #平均数
a.sum() #和
a.sum(axis=0\1)#每列\行的和
a.std() #标准差反应是数据和平均值的离散情况
a.sqrt() #平方根
np.where(a<80,0,90) #三目 如果小于80替换为0,否则替换成90
切片灵活操作数据 (重点)
#切片灵活操作数据
import numpy as np
a = np.arange(1,10).reshape(3,3)
"""
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
"""
a[:,1] #所有行的第二列数据 array([2, 5, 8])
a[:2,:2] #前两行的前两列数据array([[1, 2][4,5]])
a[0].max() #第一行的最大数据 3
a[0][1] #第一行的第二个数据 2
Numpy读文档
格式(一般不使用)
a = np.genfromtxt(path,delimiter=',',dtype=str,skip_header=1)
Ndarray和list的区别
Ndarray创建时有固定的大小(list可动态增加)
Ndarray元素都具有相同的数据类型
Ndarray内置大量的数学函数可进行高等数学相关操作(高效)
Ndarray支持矢量化(向量化)--简洁,高效,更接近标准数学
比如:二维list每个元素相乘,需要双层循环
a+b ===>矩阵自动实现每个对应元素相加
列表 a +b ===> 列表连接
算法汇总
np.std()标准差 --------->反应与平均值的离散情况
正态分布:
也叫钟行图,高斯分布
反应是集中的分布趋势,峰值周围是分布数据量最多的
np.random.randn(3,3)测试的符合正太分布的数据
反应的现实情况,种群智力水平,身高,体重,医学领域.
点阵积:dot()
待讲................
Python数据分析Numpy库方法简介(二)的更多相关文章
- Python数据分析Numpy库方法简介(一)
Numpy功能简介: 1.官网:www.numpy.org 2.特点:(1)高效的多维矩阵/数组; (2);复杂的广播功能 (3):有大量的内置数学统计函数 矩阵(多维数组): 一维数组: ([ 值 ...
- Python数据分析Numpy库方法简介(四)
Numpy的相关概念2 副本和视图 副本:复制 三种情况属于浅copy 赋值运算 切片 视图:链接,操作数组是,返回的不是副本就是视图 c =a.view().创建a的视图/影子和切片一样都是浅cop ...
- Python数据分析Numpy库方法简介(三)
补充: np.ceil()向上取整 3.1向上取整是4 np.floor()向下取整 数组名.resize((m,n)) 重置行列 基础操作 np.random.randn()符合正态分布(钟行/高斯 ...
- Python数据分析Pandas库方法简介
Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...
- Python数据分析numpy库
1.简介 Numpy库是进行数据分析的基础库,panda库就是基于Numpy库的,在计算多维数组与大型数组方面使用最广,还提供多个函数操作起来效率也高 2.Numpy库的安装 linux(Ubuntu ...
- Python数据分析-Numpy数值计算
Numpy介绍: NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. NumPy的主要功能: 1)ndarray,一个多维数组结构,高效且节省空间 2)无需循环对整组 ...
- window7安装python的xgboost库方法
window7安装python的xgboost库方法 1.下载xgboost-master.zip文件,而不是xgboost-0.4a30.tar.gz,xgboost-0.4a30.tar.gz是更 ...
- python数据分析Numpy(二)
Numpy (Numerical Python) 高性能科学计算和数据分析的基础包: ndarray,多维数组(矩阵),具有矢量运算能力,快速.节省空间: 矩阵运算,无需循环,可以完成类似Matlab ...
- Python数据分析——numpy基础简介
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:基因学苑 NumPy(Numerical Python的简称)是高性 ...
随机推荐
- 【中间件安全】WebSphere安全加固规范
1. 适用情况 适用于使用WebSphere进行部署的Web网站. 2. 技能要求 熟悉WebSphere安装部署,熟悉WebSphere常见漏洞利用方式,并能针对站点使用WebSphere进行安全加 ...
- java高级---->Java观察者的原理
观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象.这个主题对象在状态上发生变化时,会通知所有观察者对象,让他们能够自动更新自己.今天我们通过模拟按钮的处理事件来深入Java ...
- unity(2017.3) C# 常用API
1. 获取物体的 GetComponent playerRigidbody = GetComponent<Rigidbody> (); GetComponent<Animatro&g ...
- jquery验证规则
<!DOCTYPE html><html><head><meta charset="utf-8"><title>菜鸟教程 ...
- 关于 systemctl --user status 报错的问题
关于 systemctl --user enable mpd 报错: Failed to connect to bus: No such file or directory 因为arch脚本中,sys ...
- weblogic反序列化漏洞CVE-2018-2628-批量检测脚本
#coding=utf-8 import socket import time import re,os,sys,codecs type = 'utf-8' reload(sys) sys.setde ...
- mysql批量更新的两种方式效率试验<二>
Mysql两种批量更新的对比 简介: mysql搭载mybits框架批量更新有两种方式,一种是在xml中循环整个update语句,中间以‘:’隔开,还有一种是使用case when 变相实现批量更新, ...
- ubuntu安装notepad++
sudo add-apt-repository ppa:notepadqq-team/notepadqq sudo apt-get update sudo apt-get install notepa ...
- day13 十三、迭代器、生成器、枚举对象
def my_generator(): print(1111) yield '结果1' print(2222) yield '结果2' print(3333) yield '结果3' print(44 ...
- fiddler 修改
很多新手学习fiddler抓包的同学们都会对https网站抓包难或者抓不起来的问题无所适从,想寻求解决办法,没问题,这节课就来解决你的疑问! 最典型的网站就是目前的百度网站了,百度在近些年采用了htt ...