Boruvka算法求最小生成树
学习了一个新的最小生成树的算法,Boruvka(虽然我不知道怎么读)。算法思想也是贪心,类似于Kruskal。
大致是这样的,我们维护图中所有连通块,然后遍历所有的点和边,找到每一个连通块和其他连通块相连的最小的一条边,然后把连通块合并起来,重复这个操作,直到剩下一整个连通块,最开始状态是每个点是一个单独的连通块。
复杂度是(n+m)longn,因为每次都会合并两个连通块,整个程序进行log次操作就会完成,每次操作的复杂度是n+m的。
代码非常好理解,我用的并查集实现,(然而并查集我没有用按秩合并,都是细节)。——by VANE
#include<bits/stdc++.h>
using namespace std;
const int N=;
const int M=;
int pre[M<<],other[M<<],last[N],l,len[M<<];
int n,m;
void add(int x,int y,int z)
{
++l;pre[l]=last[x];last[x]=l;other[l]=y;len[l]=z;
}
int f[N],mn[][N];
int getfa(int x)
{
return x==f[x]?x:f[x]=getfa(f[x]);
}
void merge(int x,int y)
{
int fx=getfa(x),fy=getfa(y);
f[fx]=fy;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i) f[i]=i;
for(int i=;i<=m;++i)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);add(y,x,z);
}
int ans=;
while()
{
memset(mn[],,sizeof mn[]);
bool flag=;
for(int i=;i<=n;++i)
{
for(int p=last[i];p;p=pre[p])
{
if(getfa(i)!=getfa(other[p]))
if(mn[][getfa(i)]>len[p])
{
mn[][getfa(i)]=len[p];
mn[][getfa(i)]=getfa(other[p]);
}
}
}
for(int i=;i<=n;++i)
{
if(mn[][i]!=mn[][]&&getfa(i)!=getfa(mn[][i]))
{
flag=;
ans+=mn[][i];
merge(i,mn[][i]);
}
}
if(!flag) break;
}
for(int i=;i<n;++i)
if(getfa(i)!=getfa(i+))
{
puts("orz");
return ;
}
cout<<ans;
}
Boruvka算法求最小生成树的更多相关文章
- HDU-1233 还是畅通工程 (prim 算法求最小生成树)
prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Kruskal和Prim算法求最小生成树
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...
- 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构
题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...
- prime算法求最小生成树(畅通工程再续)
连着做了四道畅通工程的题,其实都是一个套路,转化为可以求最小生成树的形式求最小生成树即可 这道题需要注意: 1:因为满足路的长度在10到1000之间才能建路,所以不满足条件的路径长度可以初始化为无穷 ...
- 克鲁斯卡尔(Kruskal)算法求最小生成树
/* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...
- Prim算法和Kruskal算法求最小生成树
Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...
- Prime算法 与 Kruskal算法求最小生成树模板
算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...
- 859. Kruskal算法求最小生成树(模板)
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...
- 858. Prim算法求最小生成树(模板)
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...
随机推荐
- 20165314 2016-2017-2 《Java程序设计》第9周学习总结
20165314 2016-2017-2 <Java程序设计>第9周学习总结 教材学习内容总结 URl类 UDP数据报 广播数据报 套接字 套接字连接机制 代码托管
- Appium Demo
import unittestimport timefrom appium import webdriverfrom public import configimport os #类继承unittes ...
- AI学习吧-REDIS-常识
Redis 是一个non-sql,非关系型数据库,数据存放在内存中,支持持久化,redis中的数据会在一段时间内和(mysql等数据库)磁盘进行同步,防止丢失,这样也就降低了读数据效率. Redis和 ...
- Docker相关释义
Docker相关释义 基础网站:http://www.runoob.com/docker/docker-tutorial.html Docker的思想来自于集装箱,集装箱解决了什么问题?在一艘大船上, ...
- hexo+github page +markdown问题汇总
1.没有权限提交 解决办法:把git版本由2.x改为1.9 未完待续
- 使用Bazel构建C/C++项目
目录 前提 基本概念 速查链接汇总 stage1: 一个package, 一个target stage2: 一个package,多个target stage3: 多package,多target st ...
- openresty capture
local args = {} args["name"] = "张三" args["sex"] = "男" local ...
- Visual Studio "14" CTPs
下载地址:http://www.visualstudio.com/en-us/downloads/visual-studio-14-ctp-vs 上张有亮点的图: 实现亮点的方法(Remo ...
- Spring MVC基础知识整理➣拦截器和自定义注解
概述 Spring MVC中通过注解来对方法或者类进行动态的说明或者标注,类似于配置标识文件的属性信息.当标注的类或者方式被使用时候,通过提取注解信息来达到对类的动态处理.在 MVC中,我们常用的注解 ...
- 「BZOJ3791」作业
题解: 比正解的做法要复杂 正解直接确定了最多有2k-1段 并且可以证明2k-1是一定可以覆盖的 于是可以直接dp 我的想法是先覆盖一段黑的,然后白的覆盖上去 所以f[i][0/1/2][0/1/2] ...