学习了一个新的最小生成树的算法,Boruvka(虽然我不知道怎么读)。算法思想也是贪心,类似于Kruskal。

大致是这样的,我们维护图中所有连通块,然后遍历所有的点和边,找到每一个连通块和其他连通块相连的最小的一条边,然后把连通块合并起来,重复这个操作,直到剩下一整个连通块,最开始状态是每个点是一个单独的连通块。

复杂度是(n+m)longn,因为每次都会合并两个连通块,整个程序进行log次操作就会完成,每次操作的复杂度是n+m的。

代码非常好理解,我用的并查集实现,(然而并查集我没有用按秩合并,都是细节)。——by VANE

#include<bits/stdc++.h>
using namespace std;
const int N=;
const int M=;
int pre[M<<],other[M<<],last[N],l,len[M<<];
int n,m;
void add(int x,int y,int z)
{
++l;pre[l]=last[x];last[x]=l;other[l]=y;len[l]=z;
}
int f[N],mn[][N];
int getfa(int x)
{
return x==f[x]?x:f[x]=getfa(f[x]);
}
void merge(int x,int y)
{
int fx=getfa(x),fy=getfa(y);
f[fx]=fy;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i) f[i]=i;
for(int i=;i<=m;++i)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);add(y,x,z);
}
int ans=;
while()
{
memset(mn[],,sizeof mn[]);
bool flag=;
for(int i=;i<=n;++i)
{
for(int p=last[i];p;p=pre[p])
{
if(getfa(i)!=getfa(other[p]))
if(mn[][getfa(i)]>len[p])
{
mn[][getfa(i)]=len[p];
mn[][getfa(i)]=getfa(other[p]);
}
}
}
for(int i=;i<=n;++i)
{
if(mn[][i]!=mn[][]&&getfa(i)!=getfa(mn[][i]))
{
flag=;
ans+=mn[][i];
merge(i,mn[][i]);
}
}
if(!flag) break;
}
for(int i=;i<n;++i)
if(getfa(i)!=getfa(i+))
{
puts("orz");
return ;
}
cout<<ans;
}

Boruvka算法求最小生成树的更多相关文章

  1. HDU-1233 还是畅通工程 (prim 算法求最小生成树)

    prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  2. Kruskal和Prim算法求最小生成树

    Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...

  3. 利用Kruskal算法求最小生成树解决聪明的猴子问题 -- 数据结构

    题目:聪明的猴子 链接:https://ac.nowcoder.com/acm/problem/19964 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个 ...

  4. prime算法求最小生成树(畅通工程再续)

    连着做了四道畅通工程的题,其实都是一个套路,转化为可以求最小生成树的形式求最小生成树即可 这道题需要注意: 1:因为满足路的长度在10到1000之间才能建路,所以不满足条件的路径长度可以初始化为无穷 ...

  5. 克鲁斯卡尔(Kruskal)算法求最小生成树

    /* *Kruskal算法求MST */ #include <iostream> #include <cstdio> #include <cstring> #inc ...

  6. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  7. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

  8. 859. Kruskal算法求最小生成树(模板)

    给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...

  9. 858. Prim算法求最小生成树(模板)

    给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数. 求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible. 给定一张边带权的无向图G=(V, E),其中V表示 ...

随机推荐

  1. bzoj 1042

    典型的背包+容斥 首先,考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可 接下来,如果有个数的限制,那么我们就要利用一些容斥的思想:没有1个超过限制的方 ...

  2. python selenium-webdriver 生成测试报告

    测试最后的一个重要的过程就是生成一份完整的测试报告,生成测试报告的主要是通过python的一个第三方模块HTMLTestRunner.py生成,但是生成的测试报告不是特别的美观,而且没有办法统计测试结 ...

  3. 论文阅读笔记十八:ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation(CVPR2016)

    论文源址:https://arxiv.org/abs/1606.02147 tensorflow github: https://github.com/kwotsin/TensorFlow-ENet ...

  4. 【转】asp.net Core 系列【一】——创建Web应用

    ASP.NET Core 中的 Razor 页面介绍 Razor 页面是 ASP.NET Core MVC 的一个新功能,它可以使基于页面的编码方式更简单高效. 若要查找使用模型视图控制器方法的教程, ...

  5. NodeJs——router报错原因

    rout.js var http = require('http'); var url = require('url'); var router = require('./models/router. ...

  6. file /usr/share/mysql/charsets/README from install of MySQL-server-5.1.73-1.glibc23.i386 conflicts with file from package mysql-libs-5.1.73-8.el6_8.i686

    1:也许之前的机器安装过Mysql,但是自己不知道,账号密码也忘记了,又执行安装操作,导致Mysql不兼容问题.Linux上安装MySQL时出现不兼容的解决办法,错误如下所示: [root@maste ...

  7. linux操作系统中oracle数据库的密码过期问题解决

    1:首先确定linux登录的用户是root 切换到数据库用户 su oracle(切记,如果这里su oracle不可以,那么就使用此命令su - oracle,这个命令切换到数据库用户肯定可以成功. ...

  8. HTML5语音输入方法

    谷歌的网站是时逛时新啊,今天在他们首页发现了HTML5的新玩法——语音搜索.可惜的是只有webkit核心的浏览器才能使用.用法很简单只需要在input添加属性 x-webkit-speech 即可,例 ...

  9. Windows Azure 搭建网络代理 Proxy

    额 题目起的有点大 其实就是在 Linux 上使用代理 不过是用的 Azure 上的 Liunx 虚拟机而已 如何在 Azure 上搭建 VPN 见上篇:http://www.cnblogs.com/ ...

  10. Redis-Sentinel 哨兵

    为什么需要哨兵? 一旦主节点宕机,那么需要人为修改所有应用方的主节点地址(改为新的master地址),还需要命令所有从节点复制新的主节点 那么这个问题,redis-sentinel就可以解决了 什么是 ...