libev代码
就是贴上来:
ev.c:
/*
* libev event processing core, watcher management
*/ /* this big block deduces configuration from config.h */
#ifndef EV_STANDALONE
# ifdef EV_CONFIG_H
# include EV_CONFIG_H
# else
# include "config.h"
# endif #if HAVE_FLOOR
# ifndef EV_USE_FLOOR
# define EV_USE_FLOOR 1
# endif
#endif # if HAVE_CLOCK_SYSCALL
# ifndef EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 1
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# endif
# endif
# elif !defined EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 0
# endif # if HAVE_CLOCK_GETTIME
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# else
# ifndef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
# endif
# ifndef EV_USE_REALTIME
# define EV_USE_REALTIME 0
# endif
# endif # if HAVE_NANOSLEEP
# ifndef EV_USE_NANOSLEEP
# define EV_USE_NANOSLEEP EV_FEATURE_OS
# endif
# else
# undef EV_USE_NANOSLEEP
# define EV_USE_NANOSLEEP 0
# endif # if HAVE_SELECT && HAVE_SYS_SELECT_H
# ifndef EV_USE_SELECT
# define EV_USE_SELECT EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_SELECT
# define EV_USE_SELECT 0
# endif # if HAVE_POLL && HAVE_POLL_H
# ifndef EV_USE_POLL
# define EV_USE_POLL EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_POLL
# define EV_USE_POLL 0
# endif # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
# ifndef EV_USE_EPOLL
# define EV_USE_EPOLL EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_EPOLL
# define EV_USE_EPOLL 0
# endif # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
# ifndef EV_USE_KQUEUE
# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_KQUEUE
# define EV_USE_KQUEUE 0
# endif # if HAVE_PORT_H && HAVE_PORT_CREATE
# ifndef EV_USE_PORT
# define EV_USE_PORT EV_FEATURE_BACKENDS
# endif
# else
# undef EV_USE_PORT
# define EV_USE_PORT 0
# endif # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
# ifndef EV_USE_INOTIFY
# define EV_USE_INOTIFY EV_FEATURE_OS
# endif
# else
# undef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
# endif # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
# ifndef EV_USE_SIGNALFD
# define EV_USE_SIGNALFD EV_FEATURE_OS
# endif
# else
# undef EV_USE_SIGNALFD
# define EV_USE_SIGNALFD 0
# endif # if HAVE_EVENTFD
# ifndef EV_USE_EVENTFD
# define EV_USE_EVENTFD EV_FEATURE_OS
# endif
# else
# undef EV_USE_EVENTFD
# define EV_USE_EVENTFD 0
# endif #endif #include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <stddef.h> #include <stdio.h> #include <assert.h>
#include <errno.h>
#include <sys/types.h>
#include <time.h>
#include <limits.h> #include <signal.h> #ifdef EV_H
# include EV_H
#else
# include "ev.h"
#endif #if EV_NO_THREADS
# undef EV_NO_SMP
# define EV_NO_SMP 1
# undef ECB_NO_THREADS
# define ECB_NO_THREADS 1
#endif
#if EV_NO_SMP
# undef EV_NO_SMP
# define ECB_NO_SMP 1
#endif #ifndef _WIN32
# include <sys/time.h>
# include <sys/wait.h>
# include <unistd.h>
#else
# include <io.h>
# define WIN32_LEAN_AND_MEAN
# include <winsock2.h>
# include <windows.h>
# ifndef EV_SELECT_IS_WINSOCKET
# define EV_SELECT_IS_WINSOCKET 1
# endif
# undef EV_AVOID_STDIO
#endif /* OS X, in its infinite idiocy, actually HARDCODES
* a limit of 1024 into their select. Where people have brains,
* OS X engineers apparently have a vacuum. Or maybe they were
* ordered to have a vacuum, or they do anything for money.
* This might help. Or not.
*/
#define _DARWIN_UNLIMITED_SELECT 1 /* this block tries to deduce configuration from header-defined symbols and defaults */ /* try to deduce the maximum number of signals on this platform */
#if defined EV_NSIG
/* use what's provided */
#elif defined NSIG
# define EV_NSIG (NSIG)
#elif defined _NSIG
# define EV_NSIG (_NSIG)
#elif defined SIGMAX
# define EV_NSIG (SIGMAX+1)
#elif defined SIG_MAX
# define EV_NSIG (SIG_MAX+1)
#elif defined _SIG_MAX
# define EV_NSIG (_SIG_MAX+1)
#elif defined MAXSIG
# define EV_NSIG (MAXSIG+1)
#elif defined MAX_SIG
# define EV_NSIG (MAX_SIG+1)
#elif defined SIGARRAYSIZE
# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
#elif defined _sys_nsig
# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
#else
# error "unable to find value for NSIG, please report"
/* to make it compile regardless, just remove the above line, */
/* but consider reporting it, too! :) */
# define EV_NSIG 65
#endif #ifndef EV_USE_FLOOR
# define EV_USE_FLOOR 0
#endif #ifndef EV_USE_CLOCK_SYSCALL
# if __linux && __GLIBC__ >= 2
# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
# else
# define EV_USE_CLOCK_SYSCALL 0
# endif
#endif #ifndef EV_USE_MONOTONIC
# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
# define EV_USE_MONOTONIC EV_FEATURE_OS
# else
# define EV_USE_MONOTONIC 0
# endif
#endif #ifndef EV_USE_REALTIME
# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
#endif #ifndef EV_USE_NANOSLEEP
# if _POSIX_C_SOURCE >= 199309L
# define EV_USE_NANOSLEEP EV_FEATURE_OS
# else
# define EV_USE_NANOSLEEP 0
# endif
#endif #ifndef EV_USE_SELECT
# define EV_USE_SELECT EV_FEATURE_BACKENDS
#endif #ifndef EV_USE_POLL
# ifdef _WIN32
# define EV_USE_POLL 0
# else
# define EV_USE_POLL EV_FEATURE_BACKENDS
# endif
#endif #ifndef EV_USE_EPOLL
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
# define EV_USE_EPOLL EV_FEATURE_BACKENDS
# else
# define EV_USE_EPOLL 0
# endif
#endif #ifndef EV_USE_KQUEUE
# define EV_USE_KQUEUE 0
#endif #ifndef EV_USE_PORT
# define EV_USE_PORT 0
#endif #ifndef EV_USE_INOTIFY
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
# define EV_USE_INOTIFY EV_FEATURE_OS
# else
# define EV_USE_INOTIFY 0
# endif
#endif #ifndef EV_PID_HASHSIZE
# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
#endif #ifndef EV_INOTIFY_HASHSIZE
# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
#endif #ifndef EV_USE_EVENTFD
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
# define EV_USE_EVENTFD EV_FEATURE_OS
# else
# define EV_USE_EVENTFD 0
# endif
#endif #ifndef EV_USE_SIGNALFD
# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
# define EV_USE_SIGNALFD EV_FEATURE_OS
# else
# define EV_USE_SIGNALFD 0
# endif
#endif #if 0 /* debugging */
# define EV_VERIFY 3
# define EV_USE_4HEAP 1
# define EV_HEAP_CACHE_AT 1
#endif #ifndef EV_VERIFY
# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
#endif #ifndef EV_USE_4HEAP
# define EV_USE_4HEAP EV_FEATURE_DATA
#endif #ifndef EV_HEAP_CACHE_AT
# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
#endif #ifdef ANDROID
/* supposedly, android doesn't typedef fd_mask */
# undef EV_USE_SELECT
# define EV_USE_SELECT 0
/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
# undef EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 0
#endif /* aix's poll.h seems to cause lots of trouble */
#ifdef _AIX
/* AIX has a completely broken poll.h header */
# undef EV_USE_POLL
# define EV_USE_POLL 0
#endif /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
/* which makes programs even slower. might work on other unices, too. */
#if EV_USE_CLOCK_SYSCALL
# include <sys/syscall.h>
# ifdef SYS_clock_gettime
# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
# undef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 1
# else
# undef EV_USE_CLOCK_SYSCALL
# define EV_USE_CLOCK_SYSCALL 0
# endif
#endif /* this block fixes any misconfiguration where we know we run into trouble otherwise */ #ifndef CLOCK_MONOTONIC
# undef EV_USE_MONOTONIC
# define EV_USE_MONOTONIC 0
#endif #ifndef CLOCK_REALTIME
# undef EV_USE_REALTIME
# define EV_USE_REALTIME 0
#endif #if !EV_STAT_ENABLE
# undef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
#endif #if !EV_USE_NANOSLEEP
/* hp-ux has it in sys/time.h, which we unconditionally include above */
# if !defined _WIN32 && !defined __hpux
# include <sys/select.h>
# endif
#endif #if EV_USE_INOTIFY
# include <sys/statfs.h>
# include <sys/inotify.h>
/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
# ifndef IN_DONT_FOLLOW
# undef EV_USE_INOTIFY
# define EV_USE_INOTIFY 0
# endif
#endif #if EV_USE_EVENTFD
/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
# include <stdint.h>
# ifndef EFD_NONBLOCK
# define EFD_NONBLOCK O_NONBLOCK
# endif
# ifndef EFD_CLOEXEC
# ifdef O_CLOEXEC
# define EFD_CLOEXEC O_CLOEXEC
# else
# define EFD_CLOEXEC 02000000
# endif
# endif
EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
#endif #if EV_USE_SIGNALFD
/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
# include <stdint.h>
# ifndef SFD_NONBLOCK
# define SFD_NONBLOCK O_NONBLOCK
# endif
# ifndef SFD_CLOEXEC
# ifdef O_CLOEXEC
# define SFD_CLOEXEC O_CLOEXEC
# else
# define SFD_CLOEXEC 02000000
# endif
# endif
EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags); struct signalfd_siginfo
{
uint32_t ssi_signo;
char pad[128 - sizeof (uint32_t)];
};
#endif /**/ #if EV_VERIFY >= 3
# define EV_FREQUENT_CHECK ev_verify (EV_A)
#else
# define EV_FREQUENT_CHECK do { } while (0)
#endif /*
* This is used to work around floating point rounding problems.
* This value is good at least till the year 4000.
*/
#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */ #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0) /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
/* ECB.H BEGIN */
/*
* libecb - http://software.schmorp.de/pkg/libecb
*
* Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
* Copyright (©) 2011 Emanuele Giaquinta
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modifica-
* tion, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
* ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/ #ifndef ECB_H
#define ECB_H /* 16 bits major, 16 bits minor */
#define ECB_VERSION 0x00010003 #ifdef _WIN32
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef signed short int16_t;
typedef unsigned short uint16_t;
typedef signed int int32_t;
typedef unsigned int uint32_t;
#if __GNUC__
typedef signed long long int64_t;
typedef unsigned long long uint64_t;
#else /* _MSC_VER || __BORLANDC__ */
typedef signed __int64 int64_t;
typedef unsigned __int64 uint64_t;
#endif
#ifdef _WIN64
#define ECB_PTRSIZE 8
typedef uint64_t uintptr_t;
typedef int64_t intptr_t;
#else
#define ECB_PTRSIZE 4
typedef uint32_t uintptr_t;
typedef int32_t intptr_t;
#endif
#else
#include <inttypes.h>
#if UINTMAX_MAX > 0xffffffffU
#define ECB_PTRSIZE 8
#else
#define ECB_PTRSIZE 4
#endif
#endif /* work around x32 idiocy by defining proper macros */
#if __x86_64 || _M_AMD64
#if __ILP32
#define ECB_AMD64_X32 1
#else
#define ECB_AMD64 1
#endif
#endif /* many compilers define _GNUC_ to some versions but then only implement
* what their idiot authors think are the "more important" extensions,
* causing enormous grief in return for some better fake benchmark numbers.
* or so.
* we try to detect these and simply assume they are not gcc - if they have
* an issue with that they should have done it right in the first place.
*/
#ifndef ECB_GCC_VERSION
#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
#define ECB_GCC_VERSION(major,minor) 0
#else
#define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
#endif
#endif #define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
#define ECB_C99 (__STDC_VERSION__ >= 199901L)
#define ECB_C11 (__STDC_VERSION__ >= 201112L)
#define ECB_CPP (__cplusplus+0)
#define ECB_CPP11 (__cplusplus >= 201103L) #if ECB_CPP
#define ECB_EXTERN_C extern "C"
#define ECB_EXTERN_C_BEG ECB_EXTERN_C {
#define ECB_EXTERN_C_END }
#else
#define ECB_EXTERN_C extern
#define ECB_EXTERN_C_BEG
#define ECB_EXTERN_C_END
#endif /*****************************************************************************/ /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ #if ECB_NO_THREADS
#define ECB_NO_SMP 1
#endif #if ECB_NO_SMP
#define ECB_MEMORY_FENCE do { } while (0)
#endif #ifndef ECB_MEMORY_FENCE
#if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
#if __i386 || __i386__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif __amd64 || __amd64__ || __x86_64 || __x86_64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
#elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
|| defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
#elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
|| defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
#elif __sparc || __sparc__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
#elif defined __s390__ || defined __s390x__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
#elif defined __mips__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
#elif defined __alpha__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
#elif defined __hppa__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif defined __ia64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
#endif
#endif
#endif #ifndef ECB_MEMORY_FENCE
#if ECB_GCC_VERSION(4,7)
/* see comment below (stdatomic.h) about the C11 memory model. */
#define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) /* The __has_feature syntax from clang is so misdesigned that we cannot use it
* without risking compile time errors with other compilers. We *could*
* define our own ecb_clang_has_feature, but I just can't be bothered to work
* around this shit time and again.
* #elif defined __clang && __has_feature (cxx_atomic)
* // see comment below (stdatomic.h) about the C11 memory model.
* #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
*/ #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
#define ECB_MEMORY_FENCE __sync_synchronize ()
#elif _MSC_VER >= 1400 /* VC++ 2005 */
#pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
#define ECB_MEMORY_FENCE _ReadWriteBarrier ()
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
#elif defined _WIN32
#include <WinNT.h>
#define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
#elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
#include <mbarrier.h>
#define ECB_MEMORY_FENCE __machine_rw_barrier ()
#define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
#define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
#elif __xlC__
#define ECB_MEMORY_FENCE __sync ()
#endif
#endif #ifndef ECB_MEMORY_FENCE
#if ECB_C11 && !defined __STDC_NO_ATOMICS__
/* we assume that these memory fences work on all variables/all memory accesses, */
/* not just C11 atomics and atomic accesses */
#include <stdatomic.h>
/* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
/* any fence other than seq_cst, which isn't very efficient for us. */
/* Why that is, we don't know - either the C11 memory model is quite useless */
/* for most usages, or gcc and clang have a bug */
/* I *currently* lean towards the latter, and inefficiently implement */
/* all three of ecb's fences as a seq_cst fence */
#define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
#endif
#endif #ifndef ECB_MEMORY_FENCE
#if !ECB_AVOID_PTHREADS
/*
* if you get undefined symbol references to pthread_mutex_lock,
* or failure to find pthread.h, then you should implement
* the ECB_MEMORY_FENCE operations for your cpu/compiler
* OR provide pthread.h and link against the posix thread library
* of your system.
*/
#include <pthread.h>
#define ECB_NEEDS_PTHREADS 1
#define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
#define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
#endif
#endif #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
#endif #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
#endif /*****************************************************************************/ #if __cplusplus
#define ecb_inline static inline
#elif ECB_GCC_VERSION(2,5)
#define ecb_inline static __inline__
#elif ECB_C99
#define ecb_inline static inline
#else
#define ecb_inline static
#endif #if ECB_GCC_VERSION(3,3)
#define ecb_restrict __restrict__
#elif ECB_C99
#define ecb_restrict restrict
#else
#define ecb_restrict
#endif typedef int ecb_bool; #define ECB_CONCAT_(a, b) a ## b
#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
#define ECB_STRINGIFY_(a) # a
#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) #define ecb_function_ ecb_inline #if ECB_GCC_VERSION(3,1)
#define ecb_attribute(attrlist) __attribute__(attrlist)
#define ecb_is_constant(expr) __builtin_constant_p (expr)
#define ecb_expect(expr,value) __builtin_expect ((expr),(value))
#define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
#else
#define ecb_attribute(attrlist)
#define ecb_is_constant(expr) 0
#define ecb_expect(expr,value) (expr)
#define ecb_prefetch(addr,rw,locality)
#endif /* no emulation for ecb_decltype */
#if ECB_GCC_VERSION(4,5)
#define ecb_decltype(x) __decltype(x)
#elif ECB_GCC_VERSION(3,0)
#define ecb_decltype(x) __typeof(x)
#endif #define ecb_noinline ecb_attribute ((__noinline__))
#define ecb_unused ecb_attribute ((__unused__))
#define ecb_const ecb_attribute ((__const__))
#define ecb_pure ecb_attribute ((__pure__)) #if ECB_C11
#define ecb_noreturn _Noreturn
#else
#define ecb_noreturn ecb_attribute ((__noreturn__))
#endif #if ECB_GCC_VERSION(4,3)
#define ecb_artificial ecb_attribute ((__artificial__))
#define ecb_hot ecb_attribute ((__hot__))
#define ecb_cold ecb_attribute ((__cold__))
#else
#define ecb_artificial
#define ecb_hot
#define ecb_cold
#endif /* put around conditional expressions if you are very sure that the */
/* expression is mostly true or mostly false. note that these return */
/* booleans, not the expression. */
#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
/* for compatibility to the rest of the world */
#define ecb_likely(expr) ecb_expect_true (expr)
#define ecb_unlikely(expr) ecb_expect_false (expr) /* count trailing zero bits and count # of one bits */
#if ECB_GCC_VERSION(3,4)
/* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
#define ecb_ld32(x) (__builtin_clz (x) ^ 31)
#define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
#define ecb_ctz32(x) __builtin_ctz (x)
#define ecb_ctz64(x) __builtin_ctzll (x)
#define ecb_popcount32(x) __builtin_popcount (x)
/* no popcountll */
#else
ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
ecb_function_ int
ecb_ctz32 (uint32_t x)
{
int r = 0; x &= ~x + 1; /* this isolates the lowest bit */ #if ECB_branchless_on_i386
r += !!(x & 0xaaaaaaaa) << 0;
r += !!(x & 0xcccccccc) << 1;
r += !!(x & 0xf0f0f0f0) << 2;
r += !!(x & 0xff00ff00) << 3;
r += !!(x & 0xffff0000) << 4;
#else
if (x & 0xaaaaaaaa) r += 1;
if (x & 0xcccccccc) r += 2;
if (x & 0xf0f0f0f0) r += 4;
if (x & 0xff00ff00) r += 8;
if (x & 0xffff0000) r += 16;
#endif return r;
} ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
ecb_function_ int
ecb_ctz64 (uint64_t x)
{
int shift = x & 0xffffffffU ? 0 : 32;
return ecb_ctz32 (x >> shift) + shift;
} ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
ecb_function_ int
ecb_popcount32 (uint32_t x)
{
x -= (x >> 1) & 0x55555555;
x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
x = ((x >> 4) + x) & 0x0f0f0f0f;
x *= 0x01010101; return x >> 24;
} ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
ecb_function_ int ecb_ld32 (uint32_t x)
{
int r = 0; if (x >> 16) { x >>= 16; r += 16; }
if (x >> 8) { x >>= 8; r += 8; }
if (x >> 4) { x >>= 4; r += 4; }
if (x >> 2) { x >>= 2; r += 2; }
if (x >> 1) { r += 1; } return r;
} ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
ecb_function_ int ecb_ld64 (uint64_t x)
{
int r = 0; if (x >> 32) { x >>= 32; r += 32; } return r + ecb_ld32 (x);
}
#endif ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
{
return ( (x * 0x0802U & 0x22110U)
| (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
} ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
{
x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
x = ( x >> 8 ) | ( x << 8); return x;
} ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
{
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
x = ( x >> 16 ) | ( x << 16); return x;
} /* popcount64 is only available on 64 bit cpus as gcc builtin */
/* so for this version we are lazy */
ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
ecb_function_ int
ecb_popcount64 (uint64_t x)
{
return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
} ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } #if ECB_GCC_VERSION(4,3)
#define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
#define ecb_bswap32(x) __builtin_bswap32 (x)
#define ecb_bswap64(x) __builtin_bswap64 (x)
#else
ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
ecb_function_ uint16_t
ecb_bswap16 (uint16_t x)
{
return ecb_rotl16 (x, 8);
} ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
ecb_function_ uint32_t
ecb_bswap32 (uint32_t x)
{
return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
} ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
ecb_function_ uint64_t
ecb_bswap64 (uint64_t x)
{
return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
}
#endif #if ECB_GCC_VERSION(4,5)
#define ecb_unreachable() __builtin_unreachable ()
#else
/* this seems to work fine, but gcc always emits a warning for it :/ */
ecb_inline void ecb_unreachable (void) ecb_noreturn;
ecb_inline void ecb_unreachable (void) { }
#endif /* try to tell the compiler that some condition is definitely true */
#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
ecb_inline unsigned char
ecb_byteorder_helper (void)
{
/* the union code still generates code under pressure in gcc, */
/* but less than using pointers, and always seems to */
/* successfully return a constant. */
/* the reason why we have this horrible preprocessor mess */
/* is to avoid it in all cases, at least on common architectures */
/* or when using a recent enough gcc version (>= 4.6) */
#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
return 0x44;
#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return 0x44;
#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return 0x11;
#else
union
{
uint32_t i;
uint8_t c;
} u = { 0x11223344 };
return u.c;
#endif
} ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } #if ECB_GCC_VERSION(3,0) || ECB_C99
#define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
#else
#define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
#endif #if __cplusplus
template<typename T>
static inline T ecb_div_rd (T val, T div)
{
return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
}
template<typename T>
static inline T ecb_div_ru (T val, T div)
{
return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
}
#else
#define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
#define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
#endif #if ecb_cplusplus_does_not_suck
/* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
template<typename T, int N>
static inline int ecb_array_length (const T (&arr)[N])
{
return N;
}
#else
#define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
#endif /*******************************************************************************/
/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ /* basically, everything uses "ieee pure-endian" floating point numbers */
/* the only noteworthy exception is ancient armle, which uses order 43218765 */
#if 0 \
|| __i386 || __i386__ \
|| __amd64 || __amd64__ || __x86_64 || __x86_64__ \
|| __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
|| defined __arm__ && defined __ARM_EABI__ \
|| defined __s390__ || defined __s390x__ \
|| defined __mips__ \
|| defined __alpha__ \
|| defined __hppa__ \
|| defined __ia64__ \
|| defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
#define ECB_STDFP 1
#include <string.h> /* for memcpy */
#else
#define ECB_STDFP 0
#include <math.h> /* for frexp*, ldexp* */
#endif #ifndef ECB_NO_LIBM /* convert a float to ieee single/binary32 */
ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
ecb_function_ uint32_t
ecb_float_to_binary32 (float x)
{
uint32_t r; #if ECB_STDFP
memcpy (&r, &x, 4);
#else
/* slow emulation, works for anything but -0 */
uint32_t m;
int e; if (x == 0e0f ) return 0x00000000U;
if (x > +3.40282346638528860e+38f) return 0x7f800000U;
if (x < -3.40282346638528860e+38f) return 0xff800000U;
if (x != x ) return 0x7fbfffffU; m = frexpf (x, &e) * 0x1000000U; r = m & 0x80000000U; if (r)
m = -m; if (e <= -126)
{
m &= 0xffffffU;
m >>= (-125 - e);
e = -126;
} r |= (e + 126) << 23;
r |= m & 0x7fffffU;
#endif return r;
} /* converts an ieee single/binary32 to a float */
ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
ecb_function_ float
ecb_binary32_to_float (uint32_t x)
{
float r; #if ECB_STDFP
memcpy (&r, &x, 4);
#else
/* emulation, only works for normals and subnormals and +0 */
int neg = x >> 31;
int e = (x >> 23) & 0xffU; x &= 0x7fffffU; if (e)
x |= 0x800000U;
else
e = 1; /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
r = ldexpf (x * (0.5f / 0x800000U), e - 126); r = neg ? -r : r;
#endif return r;
} /* convert a double to ieee double/binary64 */
ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
ecb_function_ uint64_t
ecb_double_to_binary64 (double x)
{
uint64_t r; #if ECB_STDFP
memcpy (&r, &x, 8);
#else
/* slow emulation, works for anything but -0 */
uint64_t m;
int e; if (x == 0e0 ) return 0x0000000000000000U;
if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
if (x != x ) return 0X7ff7ffffffffffffU; m = frexp (x, &e) * 0x20000000000000U; r = m & 0x8000000000000000;; if (r)
m = -m; if (e <= -1022)
{
m &= 0x1fffffffffffffU;
m >>= (-1021 - e);
e = -1022;
} r |= ((uint64_t)(e + 1022)) << 52;
r |= m & 0xfffffffffffffU;
#endif return r;
} /* converts an ieee double/binary64 to a double */
ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
ecb_function_ double
ecb_binary64_to_double (uint64_t x)
{
double r; #if ECB_STDFP
memcpy (&r, &x, 8);
#else
/* emulation, only works for normals and subnormals and +0 */
int neg = x >> 63;
int e = (x >> 52) & 0x7ffU; x &= 0xfffffffffffffU; if (e)
x |= 0x10000000000000U;
else
e = 1; /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); r = neg ? -r : r;
#endif return r;
} #endif #endif /* ECB.H END */ #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
/* if your architecture doesn't need memory fences, e.g. because it is
* single-cpu/core, or if you use libev in a project that doesn't use libev
* from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
* libev, in which cases the memory fences become nops.
* alternatively, you can remove this #error and link against libpthread,
* which will then provide the memory fences.
*/
# error "memory fences not defined for your architecture, please report"
#endif #ifndef ECB_MEMORY_FENCE
# define ECB_MEMORY_FENCE do { } while (0)
# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
#endif #define expect_false(cond) ecb_expect_false (cond)
#define expect_true(cond) ecb_expect_true (cond)
#define noinline ecb_noinline #define inline_size ecb_inline #if EV_FEATURE_CODE
# define inline_speed ecb_inline
#else
# define inline_speed static noinline
#endif #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) #if EV_MINPRI == EV_MAXPRI
# define ABSPRI(w) (((W)w), 0)
#else
# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
#endif #define EMPTY /* required for microsofts broken pseudo-c compiler */
#define EMPTY2(a,b) /* used to suppress some warnings */ typedef ev_watcher *W;
typedef ev_watcher_list *WL;
typedef ev_watcher_time *WT; #define ev_active(w) ((W)(w))->active
#define ev_at(w) ((WT)(w))->at #if EV_USE_REALTIME
/* sig_atomic_t is used to avoid per-thread variables or locking but still */
/* giving it a reasonably high chance of working on typical architectures */
static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
#endif #if EV_USE_MONOTONIC
static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
#endif #ifndef EV_FD_TO_WIN32_HANDLE
# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
#endif
#ifndef EV_WIN32_HANDLE_TO_FD
# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
#endif
#ifndef EV_WIN32_CLOSE_FD
# define EV_WIN32_CLOSE_FD(fd) close (fd)
#endif #ifdef _WIN32
# include "ev_win32.c"
#endif /*****************************************************************************/ /* define a suitable floor function (only used by periodics atm) */ #if EV_USE_FLOOR
# include <math.h>
# define ev_floor(v) floor (v)
#else #include <float.h> /* a floor() replacement function, should be independent of ev_tstamp type */
static ev_tstamp noinline
ev_floor (ev_tstamp v)
{
/* the choice of shift factor is not terribly important */
#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
#else
const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
#endif /* argument too large for an unsigned long? */
if (expect_false (v >= shift))
{
ev_tstamp f; if (v == v - 1.)
return v; /* very large number */ f = shift * ev_floor (v * (1. / shift));
return f + ev_floor (v - f);
} /* special treatment for negative args? */
if (expect_false (v < 0.))
{
ev_tstamp f = -ev_floor (-v); return f - (f == v ? 0 : 1);
} /* fits into an unsigned long */
return (unsigned long)v;
} #endif /*****************************************************************************/ #ifdef __linux
# include <sys/utsname.h>
#endif static unsigned int noinline ecb_cold
ev_linux_version (void)
{
#ifdef __linux
unsigned int v = 0;
struct utsname buf;
int i;
char *p = buf.release; if (uname (&buf))
return 0; for (i = 3+1; --i; )
{
unsigned int c = 0; for (;;)
{
if (*p >= '0' && *p <= '9')
c = c * 10 + *p++ - '0';
else
{
p += *p == '.';
break;
}
} v = (v << 8) | c;
} return v;
#else
return 0;
#endif
} /*****************************************************************************/ #if EV_AVOID_STDIO
static void noinline ecb_cold
ev_printerr (const char *msg)
{
write (STDERR_FILENO, msg, strlen (msg));
}
#endif static void (*syserr_cb)(const char *msg) EV_THROW; void ecb_cold
ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
{
syserr_cb = cb;
} static void noinline ecb_cold
ev_syserr (const char *msg)
{
if (!msg)
msg = "(libev) system error"; if (syserr_cb)
syserr_cb (msg);
else
{
#if EV_AVOID_STDIO
ev_printerr (msg);
ev_printerr (": ");
ev_printerr (strerror (errno));
ev_printerr ("\n");
#else
perror (msg);
#endif
abort ();
}
} static void *
ev_realloc_emul (void *ptr, long size) EV_THROW
{
/* some systems, notably openbsd and darwin, fail to properly
* implement realloc (x, 0) (as required by both ansi c-89 and
* the single unix specification, so work around them here.
* recently, also (at least) fedora and debian started breaking it,
* despite documenting it otherwise.
*/ if (size)
return realloc (ptr, size); free (ptr);
return 0;
} static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul; void ecb_cold
ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
{
alloc = cb;
} inline_speed void *
ev_realloc (void *ptr, long size)
{
ptr = alloc (ptr, size); if (!ptr && size)
{
#if EV_AVOID_STDIO
ev_printerr ("(libev) memory allocation failed, aborting.\n");
#else
fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
#endif
abort ();
} return ptr;
} #define ev_malloc(size) ev_realloc (0, (size))
#define ev_free(ptr) ev_realloc ((ptr), 0) /*****************************************************************************/ /* set in reify when reification needed */
#define EV_ANFD_REIFY 1 /* file descriptor info structure */
typedef struct
{
WL head;
unsigned char events; /* the events watched for */
unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
unsigned char unused;
#if EV_USE_EPOLL
unsigned int egen; /* generation counter to counter epoll bugs */
#endif
#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
SOCKET handle;
#endif
#if EV_USE_IOCP
OVERLAPPED or, ow;
#endif
} ANFD; /* stores the pending event set for a given watcher */
typedef struct
{
W w;
int events; /* the pending event set for the given watcher */
} ANPENDING; #if EV_USE_INOTIFY
/* hash table entry per inotify-id */
typedef struct
{
WL head;
} ANFS;
#endif /* Heap Entry */
#if EV_HEAP_CACHE_AT
/* a heap element */
typedef struct {
ev_tstamp at;
WT w;
} ANHE; #define ANHE_w(he) (he).w /* access watcher, read-write */
#define ANHE_at(he) (he).at /* access cached at, read-only */
#define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
#else
/* a heap element */
typedef WT ANHE; #define ANHE_w(he) (he)
#define ANHE_at(he) (he)->at
#define ANHE_at_cache(he)
#endif #if EV_MULTIPLICITY struct ev_loop
{
ev_tstamp ev_rt_now;
#define ev_rt_now ((loop)->ev_rt_now)
#define VAR(name,decl) decl;
#include "ev_vars.h"
#undef VAR
};
#include "ev_wrap.h" static struct ev_loop default_loop_struct;
EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */ #else EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
#define VAR(name,decl) static decl;
#include "ev_vars.h"
#undef VAR static int ev_default_loop_ptr; #endif #if EV_FEATURE_API
# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
# define EV_INVOKE_PENDING invoke_cb (EV_A)
#else
# define EV_RELEASE_CB (void)0
# define EV_ACQUIRE_CB (void)0
# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
#endif #define EVBREAK_RECURSE 0x80 /*****************************************************************************/ #ifndef EV_HAVE_EV_TIME
ev_tstamp
ev_time (void) EV_THROW
{
#if EV_USE_REALTIME
if (expect_true (have_realtime))
{
struct timespec ts;
clock_gettime (CLOCK_REALTIME, &ts);
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
#endif struct timeval tv;
gettimeofday (&tv, 0);
return tv.tv_sec + tv.tv_usec * 1e-6;
}
#endif inline_size ev_tstamp
get_clock (void)
{
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
{
struct timespec ts;
clock_gettime (CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec * 1e-9;
}
#endif return ev_time ();
} #if EV_MULTIPLICITY
ev_tstamp
ev_now (EV_P) EV_THROW
{
return ev_rt_now;
}
#endif void
ev_sleep (ev_tstamp delay) EV_THROW
{
if (delay > 0.)
{
#if EV_USE_NANOSLEEP
struct timespec ts; EV_TS_SET (ts, delay);
nanosleep (&ts, 0);
#elif defined _WIN32
Sleep ((unsigned long)(delay * 1e3));
#else
struct timeval tv; /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
/* something not guaranteed by newer posix versions, but guaranteed */
/* by older ones */
EV_TV_SET (tv, delay);
select (0, 0, 0, 0, &tv);
#endif
}
} /*****************************************************************************/ #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ /* find a suitable new size for the given array, */
/* hopefully by rounding to a nice-to-malloc size */
inline_size int
array_nextsize (int elem, int cur, int cnt)
{
int ncur = cur + 1; do
ncur <<= 1;
while (cnt > ncur); /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
{
ncur *= elem;
ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
ncur = ncur - sizeof (void *) * 4;
ncur /= elem;
} return ncur;
} static void * noinline ecb_cold
array_realloc (int elem, void *base, int *cur, int cnt)
{
*cur = array_nextsize (elem, *cur, cnt);
return ev_realloc (base, elem * *cur);
} #define array_init_zero(base,count) \
memset ((void *)(base), 0, sizeof (*(base)) * (count)) #define array_needsize(type,base,cur,cnt,init) \
if (expect_false ((cnt) > (cur))) \
{ \
int ecb_unused ocur_ = (cur); \
(base) = (type *)array_realloc \
(sizeof (type), (base), &(cur), (cnt)); \
init ((base) + (ocur_), (cur) - ocur_); \
} #if 0
#define array_slim(type,stem) \
if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
{ \
stem ## max = array_roundsize (stem ## cnt >> 1); \
base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
}
#endif #define array_free(stem, idx) \
ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 /*****************************************************************************/ /* dummy callback for pending events */
static void noinline
pendingcb (EV_P_ ev_prepare *w, int revents)
{
} void noinline
ev_feed_event (EV_P_ void *w, int revents) EV_THROW
{
W w_ = (W)w;
int pri = ABSPRI (w_); if (expect_false (w_->pending))
pendings [pri][w_->pending - 1].events |= revents;
else
{
w_->pending = ++pendingcnt [pri];
array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
pendings [pri][w_->pending - 1].w = w_;
pendings [pri][w_->pending - 1].events = revents;
} pendingpri = NUMPRI - 1;
} inline_speed void
feed_reverse (EV_P_ W w)
{
array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
rfeeds [rfeedcnt++] = w;
} inline_size void
feed_reverse_done (EV_P_ int revents)
{
do
ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
while (rfeedcnt);
} inline_speed void
queue_events (EV_P_ W *events, int eventcnt, int type)
{
int i; for (i = 0; i < eventcnt; ++i)
ev_feed_event (EV_A_ events [i], type);
} /*****************************************************************************/ inline_speed void
fd_event_nocheck (EV_P_ int fd, int revents)
{
ANFD *anfd = anfds + fd;
ev_io *w; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
{
int ev = w->events & revents; if (ev)
ev_feed_event (EV_A_ (W)w, ev);
}
} /* do not submit kernel events for fds that have reify set */
/* because that means they changed while we were polling for new events */
inline_speed void
fd_event (EV_P_ int fd, int revents)
{
ANFD *anfd = anfds + fd; if (expect_true (!anfd->reify))
fd_event_nocheck (EV_A_ fd, revents);
} void
ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
{
if (fd >= 0 && fd < anfdmax)
fd_event_nocheck (EV_A_ fd, revents);
} /* make sure the external fd watch events are in-sync */
/* with the kernel/libev internal state */
inline_size void
fd_reify (EV_P)
{
int i; #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
for (i = 0; i < fdchangecnt; ++i)
{
int fd = fdchanges [i];
ANFD *anfd = anfds + fd; if (anfd->reify & EV__IOFDSET && anfd->head)
{
SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd); if (handle != anfd->handle)
{
unsigned long arg; assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0)); /* handle changed, but fd didn't - we need to do it in two steps */
backend_modify (EV_A_ fd, anfd->events, 0);
anfd->events = 0;
anfd->handle = handle;
}
}
}
#endif for (i = 0; i < fdchangecnt; ++i)
{
int fd = fdchanges [i];
ANFD *anfd = anfds + fd;
ev_io *w; unsigned char o_events = anfd->events;
unsigned char o_reify = anfd->reify; anfd->reify = 0; /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
{
anfd->events = 0; for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
anfd->events |= (unsigned char)w->events; if (o_events != anfd->events)
o_reify = EV__IOFDSET; /* actually |= */
} if (o_reify & EV__IOFDSET)
backend_modify (EV_A_ fd, o_events, anfd->events);
} fdchangecnt = 0;
} /* something about the given fd changed */
inline_size void
fd_change (EV_P_ int fd, int flags)
{
unsigned char reify = anfds [fd].reify;
anfds [fd].reify |= flags; if (expect_true (!reify))
{
++fdchangecnt;
array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
fdchanges [fdchangecnt - 1] = fd;
}
} /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
inline_speed void ecb_cold
fd_kill (EV_P_ int fd)
{
ev_io *w; while ((w = (ev_io *)anfds [fd].head))
{
ev_io_stop (EV_A_ w);
ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
}
} /* check whether the given fd is actually valid, for error recovery */
inline_size int ecb_cold
fd_valid (int fd)
{
#ifdef _WIN32
return EV_FD_TO_WIN32_HANDLE (fd) != -1;
#else
return fcntl (fd, F_GETFD) != -1;
#endif
} /* called on EBADF to verify fds */
static void noinline ecb_cold
fd_ebadf (EV_P)
{
int fd; for (fd = 0; fd < anfdmax; ++fd)
if (anfds [fd].events)
if (!fd_valid (fd) && errno == EBADF)
fd_kill (EV_A_ fd);
} /* called on ENOMEM in select/poll to kill some fds and retry */
static void noinline ecb_cold
fd_enomem (EV_P)
{
int fd; for (fd = anfdmax; fd--; )
if (anfds [fd].events)
{
fd_kill (EV_A_ fd);
break;
}
} /* usually called after fork if backend needs to re-arm all fds from scratch */
static void noinline
fd_rearm_all (EV_P)
{
int fd; for (fd = 0; fd < anfdmax; ++fd)
if (anfds [fd].events)
{
anfds [fd].events = 0;
anfds [fd].emask = 0;
fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
}
} /* used to prepare libev internal fd's */
/* this is not fork-safe */
inline_speed void
fd_intern (int fd)
{
#ifdef _WIN32
unsigned long arg = 1;
ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
#else
fcntl (fd, F_SETFD, FD_CLOEXEC);
fcntl (fd, F_SETFL, O_NONBLOCK);
#endif
} /*****************************************************************************/ /*
* the heap functions want a real array index. array index 0 is guaranteed to not
* be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
* the branching factor of the d-tree.
*/ /*
* at the moment we allow libev the luxury of two heaps,
* a small-code-size 2-heap one and a ~1.5kb larger 4-heap
* which is more cache-efficient.
* the difference is about 5% with 50000+ watchers.
*/
#if EV_USE_4HEAP #define DHEAP 4
#define HEAP0 (DHEAP - 1) /* index of first element in heap */
#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
#define UPHEAP_DONE(p,k) ((p) == (k)) /* away from the root */
inline_speed void
downheap (ANHE *heap, int N, int k)
{
ANHE he = heap [k];
ANHE *E = heap + N + HEAP0; for (;;)
{
ev_tstamp minat;
ANHE *minpos;
ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; /* find minimum child */
if (expect_true (pos + DHEAP - 1 < E))
{
/* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
}
else if (pos < E)
{
/* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
}
else
break; if (ANHE_at (he) <= minat)
break; heap [k] = *minpos;
ev_active (ANHE_w (*minpos)) = k; k = minpos - heap;
} heap [k] = he;
ev_active (ANHE_w (he)) = k;
} #else /* 4HEAP */ #define HEAP0 1
#define HPARENT(k) ((k) >> 1)
#define UPHEAP_DONE(p,k) (!(p)) /* away from the root */
inline_speed void
downheap (ANHE *heap, int N, int k)
{
ANHE he = heap [k]; for (;;)
{
int c = k << 1; if (c >= N + HEAP0)
break; c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
? 1 : 0; if (ANHE_at (he) <= ANHE_at (heap [c]))
break; heap [k] = heap [c];
ev_active (ANHE_w (heap [k])) = k; k = c;
} heap [k] = he;
ev_active (ANHE_w (he)) = k;
}
#endif /* towards the root */
inline_speed void
upheap (ANHE *heap, int k)
{
ANHE he = heap [k]; for (;;)
{
int p = HPARENT (k); if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
break; heap [k] = heap [p];
ev_active (ANHE_w (heap [k])) = k;
k = p;
} heap [k] = he;
ev_active (ANHE_w (he)) = k;
} /* move an element suitably so it is in a correct place */
inline_size void
adjustheap (ANHE *heap, int N, int k)
{
if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
upheap (heap, k);
else
downheap (heap, N, k);
} /* rebuild the heap: this function is used only once and executed rarely */
inline_size void
reheap (ANHE *heap, int N)
{
int i; /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
/* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
for (i = 0; i < N; ++i)
upheap (heap, i + HEAP0);
} /*****************************************************************************/ /* associate signal watchers to a signal signal */
typedef struct
{
EV_ATOMIC_T pending;
#if EV_MULTIPLICITY
EV_P;
#endif
WL head;
} ANSIG; static ANSIG signals [EV_NSIG - 1]; /*****************************************************************************/ #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE static void noinline ecb_cold
evpipe_init (EV_P)
{
if (!ev_is_active (&pipe_w))
{
int fds [2]; # if EV_USE_EVENTFD
fds [0] = -1;
fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
if (fds [1] < 0 && errno == EINVAL)
fds [1] = eventfd (0, 0); if (fds [1] < 0)
# endif
{
while (pipe (fds))
ev_syserr ("(libev) error creating signal/async pipe"); fd_intern (fds [0]);
} fd_intern (fds [1]); evpipe [0] = fds [0]; if (evpipe [1] < 0)
evpipe [1] = fds [1]; /* first call, set write fd */
else
{
/* on subsequent calls, do not change evpipe [1] */
/* so that evpipe_write can always rely on its value. */
/* this branch does not do anything sensible on windows, */
/* so must not be executed on windows */ dup2 (fds [1], evpipe [1]);
close (fds [1]);
} ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
ev_io_start (EV_A_ &pipe_w);
ev_unref (EV_A); /* watcher should not keep loop alive */
}
} inline_speed void
evpipe_write (EV_P_ EV_ATOMIC_T *flag)
{
ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */ if (expect_true (*flag))
return; *flag = 1;
ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */ pipe_write_skipped = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */ if (pipe_write_wanted)
{
int old_errno; pipe_write_skipped = 0;
ECB_MEMORY_FENCE_RELEASE; old_errno = errno; /* save errno because write will clobber it */ #if EV_USE_EVENTFD
if (evpipe [0] < 0)
{
uint64_t counter = 1;
write (evpipe [1], &counter, sizeof (uint64_t));
}
else
#endif
{
#ifdef _WIN32
WSABUF buf;
DWORD sent;
buf.buf = &buf;
buf.len = 1;
WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
#else
write (evpipe [1], &(evpipe [1]), 1);
#endif
} errno = old_errno;
}
} /* called whenever the libev signal pipe */
/* got some events (signal, async) */
static void
pipecb (EV_P_ ev_io *iow, int revents)
{
int i; if (revents & EV_READ)
{
#if EV_USE_EVENTFD
if (evpipe [0] < 0)
{
uint64_t counter;
read (evpipe [1], &counter, sizeof (uint64_t));
}
else
#endif
{
char dummy[4];
#ifdef _WIN32
WSABUF buf;
DWORD recvd;
DWORD flags = 0;
buf.buf = dummy;
buf.len = sizeof (dummy);
WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
#else
read (evpipe [0], &dummy, sizeof (dummy));
#endif
}
} pipe_write_skipped = 0; ECB_MEMORY_FENCE; /* push out skipped, acquire flags */ #if EV_SIGNAL_ENABLE
if (sig_pending)
{
sig_pending = 0; ECB_MEMORY_FENCE; for (i = EV_NSIG - 1; i--; )
if (expect_false (signals [i].pending))
ev_feed_signal_event (EV_A_ i + 1);
}
#endif #if EV_ASYNC_ENABLE
if (async_pending)
{
async_pending = 0; ECB_MEMORY_FENCE; for (i = asynccnt; i--; )
if (asyncs [i]->sent)
{
asyncs [i]->sent = 0;
ECB_MEMORY_FENCE_RELEASE;
ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
}
}
#endif
} /*****************************************************************************/ void
ev_feed_signal (int signum) EV_THROW
{
#if EV_MULTIPLICITY
EV_P;
ECB_MEMORY_FENCE_ACQUIRE;
EV_A = signals [signum - 1].loop; if (!EV_A)
return;
#endif signals [signum - 1].pending = 1;
evpipe_write (EV_A_ &sig_pending);
} static void
ev_sighandler (int signum)
{
#ifdef _WIN32
signal (signum, ev_sighandler);
#endif ev_feed_signal (signum);
} void noinline
ev_feed_signal_event (EV_P_ int signum) EV_THROW
{
WL w; if (expect_false (signum <= 0 || signum >= EV_NSIG))
return; --signum; #if EV_MULTIPLICITY
/* it is permissible to try to feed a signal to the wrong loop */
/* or, likely more useful, feeding a signal nobody is waiting for */ if (expect_false (signals [signum].loop != EV_A))
return;
#endif signals [signum].pending = 0;
ECB_MEMORY_FENCE_RELEASE; for (w = signals [signum].head; w; w = w->next)
ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
} #if EV_USE_SIGNALFD
static void
sigfdcb (EV_P_ ev_io *iow, int revents)
{
struct signalfd_siginfo si[2], *sip; /* these structs are big */ for (;;)
{
ssize_t res = read (sigfd, si, sizeof (si)); /* not ISO-C, as res might be -1, but works with SuS */
for (sip = si; (char *)sip < (char *)si + res; ++sip)
ev_feed_signal_event (EV_A_ sip->ssi_signo); if (res < (ssize_t)sizeof (si))
break;
}
}
#endif #endif /*****************************************************************************/ #if EV_CHILD_ENABLE
static WL childs [EV_PID_HASHSIZE]; static ev_signal childev; #ifndef WIFCONTINUED
# define WIFCONTINUED(status) 0
#endif /* handle a single child status event */
inline_speed void
child_reap (EV_P_ int chain, int pid, int status)
{
ev_child *w;
int traced = WIFSTOPPED (status) || WIFCONTINUED (status); for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
{
if ((w->pid == pid || !w->pid)
&& (!traced || (w->flags & 1)))
{
ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
w->rpid = pid;
w->rstatus = status;
ev_feed_event (EV_A_ (W)w, EV_CHILD);
}
}
} #ifndef WCONTINUED
# define WCONTINUED 0
#endif /* called on sigchld etc., calls waitpid */
static void
childcb (EV_P_ ev_signal *sw, int revents)
{
int pid, status; /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
if (!WCONTINUED
|| errno != EINVAL
|| 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
return; /* make sure we are called again until all children have been reaped */
/* we need to do it this way so that the callback gets called before we continue */
ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); child_reap (EV_A_ pid, pid, status);
if ((EV_PID_HASHSIZE) > 1)
child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
} #endif /*****************************************************************************/ #if EV_USE_IOCP
# include "ev_iocp.c"
#endif
#if EV_USE_PORT
# include "ev_port.c"
#endif
#if EV_USE_KQUEUE
# include "ev_kqueue.c"
#endif
#if EV_USE_EPOLL
# include "ev_epoll.c"
#endif
#if EV_USE_POLL
# include "ev_poll.c"
#endif
#if EV_USE_SELECT
# include "ev_select.c"
#endif int ecb_cold
ev_version_major (void) EV_THROW
{
return EV_VERSION_MAJOR;
} int ecb_cold
ev_version_minor (void) EV_THROW
{
return EV_VERSION_MINOR;
} /* return true if we are running with elevated privileges and should ignore env variables */
int inline_size ecb_cold
enable_secure (void)
{
#ifdef _WIN32
return 0;
#else
return getuid () != geteuid ()
|| getgid () != getegid ();
#endif
} unsigned int ecb_cold
ev_supported_backends (void) EV_THROW
{
unsigned int flags = 0; if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; return flags;
} unsigned int ecb_cold
ev_recommended_backends (void) EV_THROW
{
unsigned int flags = ev_supported_backends (); #ifndef __NetBSD__
/* kqueue is borked on everything but netbsd apparently */
/* it usually doesn't work correctly on anything but sockets and pipes */
flags &= ~EVBACKEND_KQUEUE;
#endif
#ifdef __APPLE__
/* only select works correctly on that "unix-certified" platform */
flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
#endif
#ifdef __FreeBSD__
flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
#endif return flags;
} unsigned int ecb_cold
ev_embeddable_backends (void) EV_THROW
{
int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
flags &= ~EVBACKEND_EPOLL; return flags;
} unsigned int
ev_backend (EV_P) EV_THROW
{
return backend;
} #if EV_FEATURE_API
unsigned int
ev_iteration (EV_P) EV_THROW
{
return loop_count;
} unsigned int
ev_depth (EV_P) EV_THROW
{
return loop_depth;
} void
ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
{
io_blocktime = interval;
} void
ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
{
timeout_blocktime = interval;
} void
ev_set_userdata (EV_P_ void *data) EV_THROW
{
userdata = data;
} void *
ev_userdata (EV_P) EV_THROW
{
return userdata;
} void
ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
{
invoke_cb = invoke_pending_cb;
} void
ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
{
release_cb = release;
acquire_cb = acquire;
}
#endif /* initialise a loop structure, must be zero-initialised */
static void noinline ecb_cold
loop_init (EV_P_ unsigned int flags) EV_THROW
{
if (!backend)
{
origflags = flags; #if EV_USE_REALTIME
if (!have_realtime)
{
struct timespec ts; if (!clock_gettime (CLOCK_REALTIME, &ts))
have_realtime = 1;
}
#endif #if EV_USE_MONOTONIC
if (!have_monotonic)
{
struct timespec ts; if (!clock_gettime (CLOCK_MONOTONIC, &ts))
have_monotonic = 1;
}
#endif /* pid check not overridable via env */
#ifndef _WIN32
if (flags & EVFLAG_FORKCHECK)
curpid = getpid ();
#endif if (!(flags & EVFLAG_NOENV)
&& !enable_secure ()
&& getenv ("LIBEV_FLAGS"))
flags = atoi (getenv ("LIBEV_FLAGS")); ev_rt_now = ev_time ();
mn_now = get_clock ();
now_floor = mn_now;
rtmn_diff = ev_rt_now - mn_now;
#if EV_FEATURE_API
invoke_cb = ev_invoke_pending;
#endif io_blocktime = 0.;
timeout_blocktime = 0.;
backend = 0;
backend_fd = -1;
sig_pending = 0;
#if EV_ASYNC_ENABLE
async_pending = 0;
#endif
pipe_write_skipped = 0;
pipe_write_wanted = 0;
evpipe [0] = -1;
evpipe [1] = -1;
#if EV_USE_INOTIFY
fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
#endif
#if EV_USE_SIGNALFD
sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
#endif if (!(flags & EVBACKEND_MASK))
flags |= ev_recommended_backends (); #if EV_USE_IOCP
if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
#endif
#if EV_USE_PORT
if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
#endif
#if EV_USE_KQUEUE
if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
#endif
#if EV_USE_EPOLL
if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
#endif
#if EV_USE_POLL
if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
#endif
#if EV_USE_SELECT
if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
#endif ev_prepare_init (&pending_w, pendingcb); #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
ev_init (&pipe_w, pipecb);
ev_set_priority (&pipe_w, EV_MAXPRI);
#endif
}
} /* free up a loop structure */
void ecb_cold
ev_loop_destroy (EV_P)
{
int i; #if EV_MULTIPLICITY
/* mimic free (0) */
if (!EV_A)
return;
#endif #if EV_CLEANUP_ENABLE
/* queue cleanup watchers (and execute them) */
if (expect_false (cleanupcnt))
{
queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
EV_INVOKE_PENDING;
}
#endif #if EV_CHILD_ENABLE
if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
{
ev_ref (EV_A); /* child watcher */
ev_signal_stop (EV_A_ &childev);
}
#endif if (ev_is_active (&pipe_w))
{
/*ev_ref (EV_A);*/
/*ev_io_stop (EV_A_ &pipe_w);*/ if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
} #if EV_USE_SIGNALFD
if (ev_is_active (&sigfd_w))
close (sigfd);
#endif #if EV_USE_INOTIFY
if (fs_fd >= 0)
close (fs_fd);
#endif if (backend_fd >= 0)
close (backend_fd); #if EV_USE_IOCP
if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
#endif
#if EV_USE_PORT
if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
#endif
#if EV_USE_KQUEUE
if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
#endif
#if EV_USE_EPOLL
if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
#endif
#if EV_USE_POLL
if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
#endif
#if EV_USE_SELECT
if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
#endif for (i = NUMPRI; i--; )
{
array_free (pending, [i]);
#if EV_IDLE_ENABLE
array_free (idle, [i]);
#endif
} ev_free (anfds); anfds = 0; anfdmax = 0; /* have to use the microsoft-never-gets-it-right macro */
array_free (rfeed, EMPTY);
array_free (fdchange, EMPTY);
array_free (timer, EMPTY);
#if EV_PERIODIC_ENABLE
array_free (periodic, EMPTY);
#endif
#if EV_FORK_ENABLE
array_free (fork, EMPTY);
#endif
#if EV_CLEANUP_ENABLE
array_free (cleanup, EMPTY);
#endif
array_free (prepare, EMPTY);
array_free (check, EMPTY);
#if EV_ASYNC_ENABLE
array_free (async, EMPTY);
#endif backend = 0; #if EV_MULTIPLICITY
if (ev_is_default_loop (EV_A))
#endif
ev_default_loop_ptr = 0;
#if EV_MULTIPLICITY
else
ev_free (EV_A);
#endif
} #if EV_USE_INOTIFY
inline_size void infy_fork (EV_P);
#endif inline_size void
loop_fork (EV_P)
{
#if EV_USE_PORT
if (backend == EVBACKEND_PORT ) port_fork (EV_A);
#endif
#if EV_USE_KQUEUE
if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
#endif
#if EV_USE_EPOLL
if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
#endif
#if EV_USE_INOTIFY
infy_fork (EV_A);
#endif #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
if (ev_is_active (&pipe_w))
{
/* pipe_write_wanted must be false now, so modifying fd vars should be safe */ ev_ref (EV_A);
ev_io_stop (EV_A_ &pipe_w); if (evpipe [0] >= 0)
EV_WIN32_CLOSE_FD (evpipe [0]); evpipe_init (EV_A);
/* iterate over everything, in case we missed something before */
ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
}
#endif postfork = 0;
} #if EV_MULTIPLICITY struct ev_loop * ecb_cold
ev_loop_new (unsigned int flags) EV_THROW
{
EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); memset (EV_A, 0, sizeof (struct ev_loop));
loop_init (EV_A_ flags); if (ev_backend (EV_A))
return EV_A; ev_free (EV_A);
return 0;
} #endif /* multiplicity */ #if EV_VERIFY
static void noinline ecb_cold
verify_watcher (EV_P_ W w)
{
assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); if (w->pending)
assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
} static void noinline ecb_cold
verify_heap (EV_P_ ANHE *heap, int N)
{
int i; for (i = HEAP0; i < N + HEAP0; ++i)
{
assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
}
} static void noinline ecb_cold
array_verify (EV_P_ W *ws, int cnt)
{
while (cnt--)
{
assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
verify_watcher (EV_A_ ws [cnt]);
}
}
#endif #if EV_FEATURE_API
void ecb_cold
ev_verify (EV_P) EV_THROW
{
#if EV_VERIFY
int i;
WL w, w2; assert (activecnt >= -1); assert (fdchangemax >= fdchangecnt);
for (i = 0; i < fdchangecnt; ++i)
assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); assert (anfdmax >= 0);
for (i = 0; i < anfdmax; ++i)
{
int j = 0; for (w = w2 = anfds [i].head; w; w = w->next)
{
verify_watcher (EV_A_ (W)w); if (j++ & 1)
{
assert (("libev: io watcher list contains a loop", w != w2));
w2 = w2->next;
} assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
}
} assert (timermax >= timercnt);
verify_heap (EV_A_ timers, timercnt); #if EV_PERIODIC_ENABLE
assert (periodicmax >= periodiccnt);
verify_heap (EV_A_ periodics, periodiccnt);
#endif for (i = NUMPRI; i--; )
{
assert (pendingmax [i] >= pendingcnt [i]);
#if EV_IDLE_ENABLE
assert (idleall >= 0);
assert (idlemax [i] >= idlecnt [i]);
array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
#endif
} #if EV_FORK_ENABLE
assert (forkmax >= forkcnt);
array_verify (EV_A_ (W *)forks, forkcnt);
#endif #if EV_CLEANUP_ENABLE
assert (cleanupmax >= cleanupcnt);
array_verify (EV_A_ (W *)cleanups, cleanupcnt);
#endif #if EV_ASYNC_ENABLE
assert (asyncmax >= asynccnt);
array_verify (EV_A_ (W *)asyncs, asynccnt);
#endif #if EV_PREPARE_ENABLE
assert (preparemax >= preparecnt);
array_verify (EV_A_ (W *)prepares, preparecnt);
#endif #if EV_CHECK_ENABLE
assert (checkmax >= checkcnt);
array_verify (EV_A_ (W *)checks, checkcnt);
#endif # if 0
#if EV_CHILD_ENABLE
for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
#endif
# endif
#endif
}
#endif #if EV_MULTIPLICITY
struct ev_loop * ecb_cold
#else
int
#endif
ev_default_loop (unsigned int flags) EV_THROW
{
if (!ev_default_loop_ptr)
{
#if EV_MULTIPLICITY
EV_P = ev_default_loop_ptr = &default_loop_struct;
#else
ev_default_loop_ptr = 1;
#endif loop_init (EV_A_ flags); if (ev_backend (EV_A))
{
#if EV_CHILD_ENABLE
ev_signal_init (&childev, childcb, SIGCHLD);
ev_set_priority (&childev, EV_MAXPRI);
ev_signal_start (EV_A_ &childev);
ev_unref (EV_A); /* child watcher should not keep loop alive */
#endif
}
else
ev_default_loop_ptr = 0;
} return ev_default_loop_ptr;
} void
ev_loop_fork (EV_P) EV_THROW
{
postfork = 1;
} /*****************************************************************************/ void
ev_invoke (EV_P_ void *w, int revents)
{
EV_CB_INVOKE ((W)w, revents);
} unsigned int
ev_pending_count (EV_P) EV_THROW
{
int pri;
unsigned int count = 0; for (pri = NUMPRI; pri--; )
count += pendingcnt [pri]; return count;
} void noinline
ev_invoke_pending (EV_P)
{
pendingpri = NUMPRI; while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
{
--pendingpri; while (pendingcnt [pendingpri])
{
ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri]; p->w->pending = 0;
EV_CB_INVOKE (p->w, p->events);
EV_FREQUENT_CHECK;
}
}
} #if EV_IDLE_ENABLE
/* make idle watchers pending. this handles the "call-idle */
/* only when higher priorities are idle" logic */
inline_size void
idle_reify (EV_P)
{
if (expect_false (idleall))
{
int pri; for (pri = NUMPRI; pri--; )
{
if (pendingcnt [pri])
break; if (idlecnt [pri])
{
queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
break;
}
}
}
}
#endif /* make timers pending */
inline_size void
timers_reify (EV_P)
{
EV_FREQUENT_CHECK; if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
{
do
{
ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */
if (w->repeat)
{
ev_at (w) += w->repeat;
if (ev_at (w) < mn_now)
ev_at (w) = mn_now; assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); ANHE_at_cache (timers [HEAP0]);
downheap (timers, timercnt, HEAP0);
}
else
ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK;
feed_reverse (EV_A_ (W)w);
}
while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); feed_reverse_done (EV_A_ EV_TIMER);
}
} #if EV_PERIODIC_ENABLE static void noinline
periodic_recalc (EV_P_ ev_periodic *w)
{
ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval); /* the above almost always errs on the low side */
while (at <= ev_rt_now)
{
ev_tstamp nat = at + w->interval; /* when resolution fails us, we use ev_rt_now */
if (expect_false (nat == at))
{
at = ev_rt_now;
break;
} at = nat;
} ev_at (w) = at;
} /* make periodics pending */
inline_size void
periodics_reify (EV_P)
{
EV_FREQUENT_CHECK; while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
{
do
{
ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ /* first reschedule or stop timer */
if (w->reschedule_cb)
{
ev_at (w) = w->reschedule_cb (w, ev_rt_now); assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); ANHE_at_cache (periodics [HEAP0]);
downheap (periodics, periodiccnt, HEAP0);
}
else if (w->interval)
{
periodic_recalc (EV_A_ w);
ANHE_at_cache (periodics [HEAP0]);
downheap (periodics, periodiccnt, HEAP0);
}
else
ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ EV_FREQUENT_CHECK;
feed_reverse (EV_A_ (W)w);
}
while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now); feed_reverse_done (EV_A_ EV_PERIODIC);
}
} /* simply recalculate all periodics */
/* TODO: maybe ensure that at least one event happens when jumping forward? */
static void noinline ecb_cold
periodics_reschedule (EV_P)
{
int i; /* adjust periodics after time jump */
for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
{
ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); if (w->reschedule_cb)
ev_at (w) = w->reschedule_cb (w, ev_rt_now);
else if (w->interval)
periodic_recalc (EV_A_ w); ANHE_at_cache (periodics [i]);
} reheap (periodics, periodiccnt);
}
#endif /* adjust all timers by a given offset */
static void noinline ecb_cold
timers_reschedule (EV_P_ ev_tstamp adjust)
{
int i; for (i = 0; i < timercnt; ++i)
{
ANHE *he = timers + i + HEAP0;
ANHE_w (*he)->at += adjust;
ANHE_at_cache (*he);
}
} /* fetch new monotonic and realtime times from the kernel */
/* also detect if there was a timejump, and act accordingly */
inline_speed void
time_update (EV_P_ ev_tstamp max_block)
{
#if EV_USE_MONOTONIC
if (expect_true (have_monotonic))
{
int i;
ev_tstamp odiff = rtmn_diff; mn_now = get_clock (); /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
/* interpolate in the meantime */
if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
{
ev_rt_now = rtmn_diff + mn_now;
return;
} now_floor = mn_now;
ev_rt_now = ev_time (); /* loop a few times, before making important decisions.
* on the choice of "4": one iteration isn't enough,
* in case we get preempted during the calls to
* ev_time and get_clock. a second call is almost guaranteed
* to succeed in that case, though. and looping a few more times
* doesn't hurt either as we only do this on time-jumps or
* in the unlikely event of having been preempted here.
*/
for (i = 4; --i; )
{
ev_tstamp diff;
rtmn_diff = ev_rt_now - mn_now; diff = odiff - rtmn_diff; if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
return; /* all is well */ ev_rt_now = ev_time ();
mn_now = get_clock ();
now_floor = mn_now;
} /* no timer adjustment, as the monotonic clock doesn't jump */
/* timers_reschedule (EV_A_ rtmn_diff - odiff) */
# if EV_PERIODIC_ENABLE
periodics_reschedule (EV_A);
# endif
}
else
#endif
{
ev_rt_now = ev_time (); if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
{
/* adjust timers. this is easy, as the offset is the same for all of them */
timers_reschedule (EV_A_ ev_rt_now - mn_now);
#if EV_PERIODIC_ENABLE
periodics_reschedule (EV_A);
#endif
} mn_now = ev_rt_now;
}
} int
ev_run (EV_P_ int flags)
{
#if EV_FEATURE_API
++loop_depth;
#endif assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE)); loop_done = EVBREAK_CANCEL; EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ do
{
#if EV_VERIFY >= 2
ev_verify (EV_A);
#endif #ifndef _WIN32
if (expect_false (curpid)) /* penalise the forking check even more */
if (expect_false (getpid () != curpid))
{
curpid = getpid ();
postfork = 1;
}
#endif #if EV_FORK_ENABLE
/* we might have forked, so queue fork handlers */
if (expect_false (postfork))
if (forkcnt)
{
queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
EV_INVOKE_PENDING;
}
#endif #if EV_PREPARE_ENABLE
/* queue prepare watchers (and execute them) */
if (expect_false (preparecnt))
{
queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
EV_INVOKE_PENDING;
}
#endif if (expect_false (loop_done))
break; /* we might have forked, so reify kernel state if necessary */
if (expect_false (postfork))
loop_fork (EV_A); /* update fd-related kernel structures */
fd_reify (EV_A); /* calculate blocking time */
{
ev_tstamp waittime = 0.;
ev_tstamp sleeptime = 0.; /* remember old timestamp for io_blocktime calculation */
ev_tstamp prev_mn_now = mn_now; /* update time to cancel out callback processing overhead */
time_update (EV_A_ 1e100); /* from now on, we want a pipe-wake-up */
pipe_write_wanted = 1; ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */ if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
{
waittime = MAX_BLOCKTIME; if (timercnt)
{
ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
if (waittime > to) waittime = to;
} #if EV_PERIODIC_ENABLE
if (periodiccnt)
{
ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
if (waittime > to) waittime = to;
}
#endif /* don't let timeouts decrease the waittime below timeout_blocktime */
if (expect_false (waittime < timeout_blocktime))
waittime = timeout_blocktime; /* at this point, we NEED to wait, so we have to ensure */
/* to pass a minimum nonzero value to the backend */
if (expect_false (waittime < backend_mintime))
waittime = backend_mintime; /* extra check because io_blocktime is commonly 0 */
if (expect_false (io_blocktime))
{
sleeptime = io_blocktime - (mn_now - prev_mn_now); if (sleeptime > waittime - backend_mintime)
sleeptime = waittime - backend_mintime; if (expect_true (sleeptime > 0.))
{
ev_sleep (sleeptime);
waittime -= sleeptime;
}
}
} #if EV_FEATURE_API
++loop_count;
#endif
assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
backend_poll (EV_A_ waittime);
assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */ pipe_write_wanted = 0; /* just an optimisation, no fence needed */ ECB_MEMORY_FENCE_ACQUIRE;
if (pipe_write_skipped)
{
assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
} /* update ev_rt_now, do magic */
time_update (EV_A_ waittime + sleeptime);
} /* queue pending timers and reschedule them */
timers_reify (EV_A); /* relative timers called last */
#if EV_PERIODIC_ENABLE
periodics_reify (EV_A); /* absolute timers called first */
#endif #if EV_IDLE_ENABLE
/* queue idle watchers unless other events are pending */
idle_reify (EV_A);
#endif #if EV_CHECK_ENABLE
/* queue check watchers, to be executed first */
if (expect_false (checkcnt))
queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
#endif EV_INVOKE_PENDING;
}
while (expect_true (
activecnt
&& !loop_done
&& !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
)); if (loop_done == EVBREAK_ONE)
loop_done = EVBREAK_CANCEL; #if EV_FEATURE_API
--loop_depth;
#endif return activecnt;
} void
ev_break (EV_P_ int how) EV_THROW
{
loop_done = how;
} void
ev_ref (EV_P) EV_THROW
{
++activecnt;
} void
ev_unref (EV_P) EV_THROW
{
--activecnt;
} void
ev_now_update (EV_P) EV_THROW
{
time_update (EV_A_ 1e100);
} void
ev_suspend (EV_P) EV_THROW
{
ev_now_update (EV_A);
} void
ev_resume (EV_P) EV_THROW
{
ev_tstamp mn_prev = mn_now; ev_now_update (EV_A);
timers_reschedule (EV_A_ mn_now - mn_prev);
#if EV_PERIODIC_ENABLE
/* TODO: really do this? */
periodics_reschedule (EV_A);
#endif
} /*****************************************************************************/
/* singly-linked list management, used when the expected list length is short */ inline_size void
wlist_add (WL *head, WL elem)
{
elem->next = *head;
*head = elem;
} inline_size void
wlist_del (WL *head, WL elem)
{
while (*head)
{
if (expect_true (*head == elem))
{
*head = elem->next;
break;
} head = &(*head)->next;
}
} /* internal, faster, version of ev_clear_pending */
inline_speed void
clear_pending (EV_P_ W w)
{
if (w->pending)
{
pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
w->pending = 0;
}
} int
ev_clear_pending (EV_P_ void *w) EV_THROW
{
W w_ = (W)w;
int pending = w_->pending; if (expect_true (pending))
{
ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
p->w = (W)&pending_w;
w_->pending = 0;
return p->events;
}
else
return 0;
} inline_size void
pri_adjust (EV_P_ W w)
{
int pri = ev_priority (w);
pri = pri < EV_MINPRI ? EV_MINPRI : pri;
pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
ev_set_priority (w, pri);
} inline_speed void
ev_start (EV_P_ W w, int active)
{
pri_adjust (EV_A_ w);
w->active = active;
ev_ref (EV_A);
} inline_size void
ev_stop (EV_P_ W w)
{
ev_unref (EV_A);
w->active = 0;
} /*****************************************************************************/ void noinline
ev_io_start (EV_P_ ev_io *w) EV_THROW
{
int fd = w->fd; if (expect_false (ev_is_active (w)))
return; assert (("libev: ev_io_start called with negative fd", fd >= 0));
assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1);
array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
wlist_add (&anfds[fd].head, (WL)w); /* common bug, apparently */
assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w)); fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
w->events &= ~EV__IOFDSET; EV_FREQUENT_CHECK;
} void noinline
ev_io_stop (EV_P_ ev_io *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); EV_FREQUENT_CHECK; wlist_del (&anfds[w->fd].head, (WL)w);
ev_stop (EV_A_ (W)w); fd_change (EV_A_ w->fd, EV_ANFD_REIFY); EV_FREQUENT_CHECK;
} void noinline
ev_timer_start (EV_P_ ev_timer *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; ev_at (w) += mn_now; assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); EV_FREQUENT_CHECK; ++timercnt;
ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
ANHE_w (timers [ev_active (w)]) = (WT)w;
ANHE_at_cache (timers [ev_active (w)]);
upheap (timers, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
} void noinline
ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); --timercnt; if (expect_true (active < timercnt + HEAP0))
{
timers [active] = timers [timercnt + HEAP0];
adjustheap (timers, timercnt, active);
}
} ev_at (w) -= mn_now; ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
} void noinline
ev_timer_again (EV_P_ ev_timer *w) EV_THROW
{
EV_FREQUENT_CHECK; clear_pending (EV_A_ (W)w); if (ev_is_active (w))
{
if (w->repeat)
{
ev_at (w) = mn_now + w->repeat;
ANHE_at_cache (timers [ev_active (w)]);
adjustheap (timers, timercnt, ev_active (w));
}
else
ev_timer_stop (EV_A_ w);
}
else if (w->repeat)
{
ev_at (w) = w->repeat;
ev_timer_start (EV_A_ w);
} EV_FREQUENT_CHECK;
} ev_tstamp
ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
{
return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
} #if EV_PERIODIC_ENABLE
void noinline
ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; if (w->reschedule_cb)
ev_at (w) = w->reschedule_cb (w, ev_rt_now);
else if (w->interval)
{
assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
periodic_recalc (EV_A_ w);
}
else
ev_at (w) = w->offset; EV_FREQUENT_CHECK; ++periodiccnt;
ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
ANHE_w (periodics [ev_active (w)]) = (WT)w;
ANHE_at_cache (periodics [ev_active (w)]);
upheap (periodics, ev_active (w)); EV_FREQUENT_CHECK; /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
} void noinline
ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); --periodiccnt; if (expect_true (active < periodiccnt + HEAP0))
{
periodics [active] = periodics [periodiccnt + HEAP0];
adjustheap (periodics, periodiccnt, active);
}
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
} void noinline
ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
{
/* TODO: use adjustheap and recalculation */
ev_periodic_stop (EV_A_ w);
ev_periodic_start (EV_A_ w);
}
#endif #ifndef SA_RESTART
# define SA_RESTART 0
#endif #if EV_SIGNAL_ENABLE void noinline
ev_signal_start (EV_P_ ev_signal *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); #if EV_MULTIPLICITY
assert (("libev: a signal must not be attached to two different loops",
!signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); signals [w->signum - 1].loop = EV_A;
ECB_MEMORY_FENCE_RELEASE;
#endif EV_FREQUENT_CHECK; #if EV_USE_SIGNALFD
if (sigfd == -2)
{
sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
if (sigfd < 0 && errno == EINVAL)
sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */ if (sigfd >= 0)
{
fd_intern (sigfd); /* doing it twice will not hurt */ sigemptyset (&sigfd_set); ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
ev_set_priority (&sigfd_w, EV_MAXPRI);
ev_io_start (EV_A_ &sigfd_w);
ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
}
} if (sigfd >= 0)
{
/* TODO: check .head */
sigaddset (&sigfd_set, w->signum);
sigprocmask (SIG_BLOCK, &sigfd_set, 0); signalfd (sigfd, &sigfd_set, 0);
}
#endif ev_start (EV_A_ (W)w, 1);
wlist_add (&signals [w->signum - 1].head, (WL)w); if (!((WL)w)->next)
# if EV_USE_SIGNALFD
if (sigfd < 0) /*TODO*/
# endif
{
# ifdef _WIN32
evpipe_init (EV_A); signal (w->signum, ev_sighandler);
# else
struct sigaction sa; evpipe_init (EV_A); sa.sa_handler = ev_sighandler;
sigfillset (&sa.sa_mask);
sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
sigaction (w->signum, &sa, 0); if (origflags & EVFLAG_NOSIGMASK)
{
sigemptyset (&sa.sa_mask);
sigaddset (&sa.sa_mask, w->signum);
sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
}
#endif
} EV_FREQUENT_CHECK;
} void noinline
ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; wlist_del (&signals [w->signum - 1].head, (WL)w);
ev_stop (EV_A_ (W)w); if (!signals [w->signum - 1].head)
{
#if EV_MULTIPLICITY
signals [w->signum - 1].loop = 0; /* unattach from signal */
#endif
#if EV_USE_SIGNALFD
if (sigfd >= 0)
{
sigset_t ss; sigemptyset (&ss);
sigaddset (&ss, w->signum);
sigdelset (&sigfd_set, w->signum); signalfd (sigfd, &sigfd_set, 0);
sigprocmask (SIG_UNBLOCK, &ss, 0);
}
else
#endif
signal (w->signum, SIG_DFL);
} EV_FREQUENT_CHECK;
} #endif #if EV_CHILD_ENABLE void
ev_child_start (EV_P_ ev_child *w) EV_THROW
{
#if EV_MULTIPLICITY
assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
#endif
if (expect_false (ev_is_active (w)))
return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, 1);
wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); EV_FREQUENT_CHECK;
} void
ev_child_stop (EV_P_ ev_child *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
} #endif #if EV_STAT_ENABLE # ifdef _WIN32
# undef lstat
# define lstat(a,b) _stati64 (a,b)
# endif #define DEF_STAT_INTERVAL 5.0074891
#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
#define MIN_STAT_INTERVAL 0.1074891 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); #if EV_USE_INOTIFY /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX) static void noinline
infy_add (EV_P_ ev_stat *w)
{
w->wd = inotify_add_watch (fs_fd, w->path,
IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
| IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
| IN_DONT_FOLLOW | IN_MASK_ADD); if (w->wd >= 0)
{
struct statfs sfs; /* now local changes will be tracked by inotify, but remote changes won't */
/* unless the filesystem is known to be local, we therefore still poll */
/* also do poll on <2.6.25, but with normal frequency */ if (!fs_2625)
w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
else if (!statfs (w->path, &sfs)
&& (sfs.f_type == 0x1373 /* devfs */
|| sfs.f_type == 0x4006 /* fat */
|| sfs.f_type == 0x4d44 /* msdos */
|| sfs.f_type == 0xEF53 /* ext2/3 */
|| sfs.f_type == 0x72b6 /* jffs2 */
|| sfs.f_type == 0x858458f6 /* ramfs */
|| sfs.f_type == 0x5346544e /* ntfs */
|| sfs.f_type == 0x3153464a /* jfs */
|| sfs.f_type == 0x9123683e /* btrfs */
|| sfs.f_type == 0x52654973 /* reiser3 */
|| sfs.f_type == 0x01021994 /* tmpfs */
|| sfs.f_type == 0x58465342 /* xfs */))
w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
else
w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
}
else
{
/* can't use inotify, continue to stat */
w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; /* if path is not there, monitor some parent directory for speedup hints */
/* note that exceeding the hardcoded path limit is not a correctness issue, */
/* but an efficiency issue only */
if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
{
char path [4096];
strcpy (path, w->path); do
{
int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
| (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); char *pend = strrchr (path, '/'); if (!pend || pend == path)
break; *pend = 0;
w->wd = inotify_add_watch (fs_fd, path, mask);
}
while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
}
} if (w->wd >= 0)
wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); /* now re-arm timer, if required */
if (ev_is_active (&w->timer)) ev_ref (EV_A);
ev_timer_again (EV_A_ &w->timer);
if (ev_is_active (&w->timer)) ev_unref (EV_A);
} static void noinline
infy_del (EV_P_ ev_stat *w)
{
int slot;
int wd = w->wd; if (wd < 0)
return; w->wd = -2;
slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
wlist_del (&fs_hash [slot].head, (WL)w); /* remove this watcher, if others are watching it, they will rearm */
inotify_rm_watch (fs_fd, wd);
} static void noinline
infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
{
if (slot < 0)
/* overflow, need to check for all hash slots */
for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
infy_wd (EV_A_ slot, wd, ev);
else
{
WL w_; for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
{
ev_stat *w = (ev_stat *)w_;
w_ = w_->next; /* lets us remove this watcher and all before it */ if (w->wd == wd || wd == -1)
{
if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
{
wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
w->wd = -1;
infy_add (EV_A_ w); /* re-add, no matter what */
} stat_timer_cb (EV_A_ &w->timer, 0);
}
}
}
} static void
infy_cb (EV_P_ ev_io *w, int revents)
{
char buf [EV_INOTIFY_BUFSIZE];
int ofs;
int len = read (fs_fd, buf, sizeof (buf)); for (ofs = 0; ofs < len; )
{
struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
infy_wd (EV_A_ ev->wd, ev->wd, ev);
ofs += sizeof (struct inotify_event) + ev->len;
}
} inline_size void ecb_cold
ev_check_2625 (EV_P)
{
/* kernels < 2.6.25 are borked
* http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
*/
if (ev_linux_version () < 0x020619)
return; fs_2625 = 1;
} inline_size int
infy_newfd (void)
{
#if defined IN_CLOEXEC && defined IN_NONBLOCK
int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
if (fd >= 0)
return fd;
#endif
return inotify_init ();
} inline_size void
infy_init (EV_P)
{
if (fs_fd != -2)
return; fs_fd = -1; ev_check_2625 (EV_A); fs_fd = infy_newfd (); if (fs_fd >= 0)
{
fd_intern (fs_fd);
ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
ev_set_priority (&fs_w, EV_MAXPRI);
ev_io_start (EV_A_ &fs_w);
ev_unref (EV_A);
}
} inline_size void
infy_fork (EV_P)
{
int slot; if (fs_fd < 0)
return; ev_ref (EV_A);
ev_io_stop (EV_A_ &fs_w);
close (fs_fd);
fs_fd = infy_newfd (); if (fs_fd >= 0)
{
fd_intern (fs_fd);
ev_io_set (&fs_w, fs_fd, EV_READ);
ev_io_start (EV_A_ &fs_w);
ev_unref (EV_A);
} for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
{
WL w_ = fs_hash [slot].head;
fs_hash [slot].head = 0; while (w_)
{
ev_stat *w = (ev_stat *)w_;
w_ = w_->next; /* lets us add this watcher */ w->wd = -1; if (fs_fd >= 0)
infy_add (EV_A_ w); /* re-add, no matter what */
else
{
w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
if (ev_is_active (&w->timer)) ev_ref (EV_A);
ev_timer_again (EV_A_ &w->timer);
if (ev_is_active (&w->timer)) ev_unref (EV_A);
}
}
}
} #endif #ifdef _WIN32
# define EV_LSTAT(p,b) _stati64 (p, b)
#else
# define EV_LSTAT(p,b) lstat (p, b)
#endif void
ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
{
if (lstat (w->path, &w->attr) < 0)
w->attr.st_nlink = 0;
else if (!w->attr.st_nlink)
w->attr.st_nlink = 1;
} static void noinline
stat_timer_cb (EV_P_ ev_timer *w_, int revents)
{
ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); ev_statdata prev = w->attr;
ev_stat_stat (EV_A_ w); /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
if (
prev.st_dev != w->attr.st_dev
|| prev.st_ino != w->attr.st_ino
|| prev.st_mode != w->attr.st_mode
|| prev.st_nlink != w->attr.st_nlink
|| prev.st_uid != w->attr.st_uid
|| prev.st_gid != w->attr.st_gid
|| prev.st_rdev != w->attr.st_rdev
|| prev.st_size != w->attr.st_size
|| prev.st_atime != w->attr.st_atime
|| prev.st_mtime != w->attr.st_mtime
|| prev.st_ctime != w->attr.st_ctime
) {
/* we only update w->prev on actual differences */
/* in case we test more often than invoke the callback, */
/* to ensure that prev is always different to attr */
w->prev = prev; #if EV_USE_INOTIFY
if (fs_fd >= 0)
{
infy_del (EV_A_ w);
infy_add (EV_A_ w);
ev_stat_stat (EV_A_ w); /* avoid race... */
}
#endif ev_feed_event (EV_A_ w, EV_STAT);
}
} void
ev_stat_start (EV_P_ ev_stat *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; ev_stat_stat (EV_A_ w); if (w->interval < MIN_STAT_INTERVAL && w->interval)
w->interval = MIN_STAT_INTERVAL; ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
ev_set_priority (&w->timer, ev_priority (w)); #if EV_USE_INOTIFY
infy_init (EV_A); if (fs_fd >= 0)
infy_add (EV_A_ w);
else
#endif
{
ev_timer_again (EV_A_ &w->timer);
ev_unref (EV_A);
} ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK;
} void
ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; #if EV_USE_INOTIFY
infy_del (EV_A_ w);
#endif if (ev_is_active (&w->timer))
{
ev_ref (EV_A);
ev_timer_stop (EV_A_ &w->timer);
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
}
#endif #if EV_IDLE_ENABLE
void
ev_idle_start (EV_P_ ev_idle *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; pri_adjust (EV_A_ (W)w); EV_FREQUENT_CHECK; {
int active = ++idlecnt [ABSPRI (w)]; ++idleall;
ev_start (EV_A_ (W)w, active); array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
idles [ABSPRI (w)][active - 1] = w;
} EV_FREQUENT_CHECK;
} void
ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
ev_active (idles [ABSPRI (w)][active - 1]) = active; ev_stop (EV_A_ (W)w);
--idleall;
} EV_FREQUENT_CHECK;
}
#endif #if EV_PREPARE_ENABLE
void
ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++preparecnt);
array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
prepares [preparecnt - 1] = w; EV_FREQUENT_CHECK;
} void
ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); prepares [active - 1] = prepares [--preparecnt];
ev_active (prepares [active - 1]) = active;
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
}
#endif #if EV_CHECK_ENABLE
void
ev_check_start (EV_P_ ev_check *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++checkcnt);
array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
checks [checkcnt - 1] = w; EV_FREQUENT_CHECK;
} void
ev_check_stop (EV_P_ ev_check *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); checks [active - 1] = checks [--checkcnt];
ev_active (checks [active - 1]) = active;
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
}
#endif #if EV_EMBED_ENABLE
void noinline
ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
{
ev_run (w->other, EVRUN_NOWAIT);
} static void
embed_io_cb (EV_P_ ev_io *io, int revents)
{
ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); if (ev_cb (w))
ev_feed_event (EV_A_ (W)w, EV_EMBED);
else
ev_run (w->other, EVRUN_NOWAIT);
} static void
embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
{
ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); {
EV_P = w->other; while (fdchangecnt)
{
fd_reify (EV_A);
ev_run (EV_A_ EVRUN_NOWAIT);
}
}
} static void
embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
{
ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); ev_embed_stop (EV_A_ w); {
EV_P = w->other; ev_loop_fork (EV_A);
ev_run (EV_A_ EVRUN_NOWAIT);
} ev_embed_start (EV_A_ w);
} #if 0
static void
embed_idle_cb (EV_P_ ev_idle *idle, int revents)
{
ev_idle_stop (EV_A_ idle);
}
#endif void
ev_embed_start (EV_P_ ev_embed *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; {
EV_P = w->other;
assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
} EV_FREQUENT_CHECK; ev_set_priority (&w->io, ev_priority (w));
ev_io_start (EV_A_ &w->io); ev_prepare_init (&w->prepare, embed_prepare_cb);
ev_set_priority (&w->prepare, EV_MINPRI);
ev_prepare_start (EV_A_ &w->prepare); ev_fork_init (&w->fork, embed_fork_cb);
ev_fork_start (EV_A_ &w->fork); /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ ev_start (EV_A_ (W)w, 1); EV_FREQUENT_CHECK;
} void
ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; ev_io_stop (EV_A_ &w->io);
ev_prepare_stop (EV_A_ &w->prepare);
ev_fork_stop (EV_A_ &w->fork); ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
}
#endif #if EV_FORK_ENABLE
void
ev_fork_start (EV_P_ ev_fork *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++forkcnt);
array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
forks [forkcnt - 1] = w; EV_FREQUENT_CHECK;
} void
ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); forks [active - 1] = forks [--forkcnt];
ev_active (forks [active - 1]) = active;
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
}
#endif #if EV_CLEANUP_ENABLE
void
ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++cleanupcnt);
array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
cleanups [cleanupcnt - 1] = w; /* cleanup watchers should never keep a refcount on the loop */
ev_unref (EV_A);
EV_FREQUENT_CHECK;
} void
ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK;
ev_ref (EV_A); {
int active = ev_active (w); cleanups [active - 1] = cleanups [--cleanupcnt];
ev_active (cleanups [active - 1]) = active;
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
}
#endif #if EV_ASYNC_ENABLE
void
ev_async_start (EV_P_ ev_async *w) EV_THROW
{
if (expect_false (ev_is_active (w)))
return; w->sent = 0; evpipe_init (EV_A); EV_FREQUENT_CHECK; ev_start (EV_A_ (W)w, ++asynccnt);
array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
asyncs [asynccnt - 1] = w; EV_FREQUENT_CHECK;
} void
ev_async_stop (EV_P_ ev_async *w) EV_THROW
{
clear_pending (EV_A_ (W)w);
if (expect_false (!ev_is_active (w)))
return; EV_FREQUENT_CHECK; {
int active = ev_active (w); asyncs [active - 1] = asyncs [--asynccnt];
ev_active (asyncs [active - 1]) = active;
} ev_stop (EV_A_ (W)w); EV_FREQUENT_CHECK;
} void
ev_async_send (EV_P_ ev_async *w) EV_THROW
{
w->sent = 1;
evpipe_write (EV_A_ &async_pending);
}
#endif /*****************************************************************************/ struct ev_once
{
ev_io io;
ev_timer to;
void (*cb)(int revents, void *arg);
void *arg;
}; static void
once_cb (EV_P_ struct ev_once *once, int revents)
{
void (*cb)(int revents, void *arg) = once->cb;
void *arg = once->arg; ev_io_stop (EV_A_ &once->io);
ev_timer_stop (EV_A_ &once->to);
ev_free (once); cb (revents, arg);
} static void
once_cb_io (EV_P_ ev_io *w, int revents)
{
struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
} static void
once_cb_to (EV_P_ ev_timer *w, int revents)
{
struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)); once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
} void
ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
{
struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); if (expect_false (!once))
{
cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
return;
} once->cb = cb;
once->arg = arg; ev_init (&once->io, once_cb_io);
if (fd >= 0)
{
ev_io_set (&once->io, fd, events);
ev_io_start (EV_A_ &once->io);
} ev_init (&once->to, once_cb_to);
if (timeout >= 0.)
{
ev_timer_set (&once->to, timeout, 0.);
ev_timer_start (EV_A_ &once->to);
}
} /*****************************************************************************/ #if EV_WALK_ENABLE
void ecb_cold
ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
{
int i, j;
ev_watcher_list *wl, *wn; if (types & (EV_IO | EV_EMBED))
for (i = 0; i < anfdmax; ++i)
for (wl = anfds [i].head; wl; )
{
wn = wl->next; #if EV_EMBED_ENABLE
if (ev_cb ((ev_io *)wl) == embed_io_cb)
{
if (types & EV_EMBED)
cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
}
else
#endif
#if EV_USE_INOTIFY
if (ev_cb ((ev_io *)wl) == infy_cb)
;
else
#endif
if ((ev_io *)wl != &pipe_w)
if (types & EV_IO)
cb (EV_A_ EV_IO, wl); wl = wn;
} if (types & (EV_TIMER | EV_STAT))
for (i = timercnt + HEAP0; i-- > HEAP0; )
#if EV_STAT_ENABLE
/*TODO: timer is not always active*/
if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
{
if (types & EV_STAT)
cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
}
else
#endif
if (types & EV_TIMER)
cb (EV_A_ EV_TIMER, ANHE_w (timers [i])); #if EV_PERIODIC_ENABLE
if (types & EV_PERIODIC)
for (i = periodiccnt + HEAP0; i-- > HEAP0; )
cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
#endif #if EV_IDLE_ENABLE
if (types & EV_IDLE)
for (j = NUMPRI; j--; )
for (i = idlecnt [j]; i--; )
cb (EV_A_ EV_IDLE, idles [j][i]);
#endif #if EV_FORK_ENABLE
if (types & EV_FORK)
for (i = forkcnt; i--; )
if (ev_cb (forks [i]) != embed_fork_cb)
cb (EV_A_ EV_FORK, forks [i]);
#endif #if EV_ASYNC_ENABLE
if (types & EV_ASYNC)
for (i = asynccnt; i--; )
cb (EV_A_ EV_ASYNC, asyncs [i]);
#endif #if EV_PREPARE_ENABLE
if (types & EV_PREPARE)
for (i = preparecnt; i--; )
# if EV_EMBED_ENABLE
if (ev_cb (prepares [i]) != embed_prepare_cb)
# endif
cb (EV_A_ EV_PREPARE, prepares [i]);
#endif #if EV_CHECK_ENABLE
if (types & EV_CHECK)
for (i = checkcnt; i--; )
cb (EV_A_ EV_CHECK, checks [i]);
#endif #if EV_SIGNAL_ENABLE
if (types & EV_SIGNAL)
for (i = 0; i < EV_NSIG - 1; ++i)
for (wl = signals [i].head; wl; )
{
wn = wl->next;
cb (EV_A_ EV_SIGNAL, wl);
wl = wn;
}
#endif #if EV_CHILD_ENABLE
if (types & EV_CHILD)
for (i = (EV_PID_HASHSIZE); i--; )
for (wl = childs [i]; wl; )
{
wn = wl->next;
cb (EV_A_ EV_CHILD, wl);
wl = wn;
}
#endif
/* EV_STAT 0x00001000 /* stat data changed */
/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
}
#endif #if EV_MULTIPLICITY
#include "ev_wrap.h"
#endif
ev.h:
/* libev native API header*/ #ifndef EV_H_
#define EV_H_ #ifdef __cplusplus
# define EV_CPP(x) x
#else
# define EV_CPP(x)
#endif #define EV_THROW EV_CPP(throw()) EV_CPP(extern "C" {) /*****************************************************************************/ /* pre-4.0 compatibility */
#ifndef EV_COMPAT3
# define EV_COMPAT3 1
#endif #ifndef EV_FEATURES
# if defined __OPTIMIZE_SIZE__
# define EV_FEATURES 0x7c
# else
# define EV_FEATURES 0x7f
# endif
#endif #define EV_FEATURE_CODE ((EV_FEATURES) & 1)
#define EV_FEATURE_DATA ((EV_FEATURES) & 2)
#define EV_FEATURE_CONFIG ((EV_FEATURES) & 4)
#define EV_FEATURE_API ((EV_FEATURES) & 8)
#define EV_FEATURE_WATCHERS ((EV_FEATURES) & 16)
#define EV_FEATURE_BACKENDS ((EV_FEATURES) & 32)
#define EV_FEATURE_OS ((EV_FEATURES) & 64) /* these priorities are inclusive, higher priorities will be invoked earlier */
#ifndef EV_MINPRI
# define EV_MINPRI (EV_FEATURE_CONFIG ? -2 : 0)
#endif
#ifndef EV_MAXPRI
# define EV_MAXPRI (EV_FEATURE_CONFIG ? +2 : 0)
#endif #ifndef EV_MULTIPLICITY
# define EV_MULTIPLICITY EV_FEATURE_CONFIG
#endif #ifndef EV_PERIODIC_ENABLE
# define EV_PERIODIC_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_STAT_ENABLE
# define EV_STAT_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_PREPARE_ENABLE
# define EV_PREPARE_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_CHECK_ENABLE
# define EV_CHECK_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_IDLE_ENABLE
# define EV_IDLE_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_FORK_ENABLE
# define EV_FORK_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_CLEANUP_ENABLE
# define EV_CLEANUP_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_SIGNAL_ENABLE
# define EV_SIGNAL_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_CHILD_ENABLE
# ifdef _WIN32
# define EV_CHILD_ENABLE 0
# else
# define EV_CHILD_ENABLE EV_FEATURE_WATCHERS
#endif
#endif #ifndef EV_ASYNC_ENABLE
# define EV_ASYNC_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_EMBED_ENABLE
# define EV_EMBED_ENABLE EV_FEATURE_WATCHERS
#endif #ifndef EV_WALK_ENABLE
# define EV_WALK_ENABLE 0 /* not yet */
#endif /*****************************************************************************/ #if EV_CHILD_ENABLE && !EV_SIGNAL_ENABLE
# undef EV_SIGNAL_ENABLE
# define EV_SIGNAL_ENABLE 1
#endif /*****************************************************************************/ typedef double ev_tstamp; #ifndef EV_ATOMIC_T
# include <signal.h>
# define EV_ATOMIC_T sig_atomic_t volatile
#endif #if EV_STAT_ENABLE
# ifdef _WIN32
# include <time.h>
# include <sys/types.h>
# endif
# include <sys/stat.h>
#endif /* support multiple event loops? */
#if EV_MULTIPLICITY
struct ev_loop;
# define EV_P struct ev_loop *loop /* a loop as sole parameter in a declaration */
# define EV_P_ EV_P, /* a loop as first of multiple parameters */
# define EV_A loop /* a loop as sole argument to a function call */
# define EV_A_ EV_A, /* a loop as first of multiple arguments */
# define EV_DEFAULT_UC ev_default_loop_uc_ () /* the default loop, if initialised, as sole arg */
# define EV_DEFAULT_UC_ EV_DEFAULT_UC, /* the default loop as first of multiple arguments */
# define EV_DEFAULT ev_default_loop (0) /* the default loop as sole arg */
# define EV_DEFAULT_ EV_DEFAULT, /* the default loop as first of multiple arguments */
#else
# define EV_P void
# define EV_P_
# define EV_A
# define EV_A_
# define EV_DEFAULT
# define EV_DEFAULT_
# define EV_DEFAULT_UC
# define EV_DEFAULT_UC_
# undef EV_EMBED_ENABLE
#endif /* EV_INLINE is used for functions in header files */
#if __STDC_VERSION__ >= 199901L || __GNUC__ >= 3
# define EV_INLINE static inline
#else
# define EV_INLINE static
#endif #ifdef EV_API_STATIC
# define EV_API_DECL static
#else
# define EV_API_DECL extern
#endif /* EV_PROTOTYPES can be used to switch of prototype declarations */
#ifndef EV_PROTOTYPES
# define EV_PROTOTYPES 1
#endif /*****************************************************************************/ #define EV_VERSION_MAJOR 4
#define EV_VERSION_MINOR 15 /* eventmask, revents, events... */
enum {
EV_UNDEF = (int)0xFFFFFFFF, /* guaranteed to be invalid */
EV_NONE = 0x00, /* no events */
EV_READ = 0x01, /* ev_io detected read will not block */
EV_WRITE = 0x02, /* ev_io detected write will not block */
EV__IOFDSET = 0x80, /* internal use only */
EV_IO = EV_READ, /* alias for type-detection */
EV_TIMER = 0x00000100, /* timer timed out */
#if EV_COMPAT3
EV_TIMEOUT = EV_TIMER, /* pre 4.0 API compatibility */
#endif
EV_PERIODIC = 0x00000200, /* periodic timer timed out */
EV_SIGNAL = 0x00000400, /* signal was received */
EV_CHILD = 0x00000800, /* child/pid had status change */
EV_STAT = 0x00001000, /* stat data changed */
EV_IDLE = 0x00002000, /* event loop is idling */
EV_PREPARE = 0x00004000, /* event loop about to poll */
EV_CHECK = 0x00008000, /* event loop finished poll */
EV_EMBED = 0x00010000, /* embedded event loop needs sweep */
EV_FORK = 0x00020000, /* event loop resumed in child */
EV_CLEANUP = 0x00040000, /* event loop resumed in child */
EV_ASYNC = 0x00080000, /* async intra-loop signal */
EV_CUSTOM = 0x01000000, /* for use by user code */
EV_ERROR = (int)0x80000000 /* sent when an error occurs */
}; /* can be used to add custom fields to all watchers, while losing binary compatibility */
#ifndef EV_COMMON
# define EV_COMMON void *data;
#endif #ifndef EV_CB_DECLARE
# define EV_CB_DECLARE(type) void (*cb)(EV_P_ struct type *w, int revents);
#endif
#ifndef EV_CB_INVOKE
# define EV_CB_INVOKE(watcher,revents) (watcher)->cb (EV_A_ (watcher), (revents))
#endif /* not official, do not use */
#define EV_CB(type,name) void name (EV_P_ struct ev_ ## type *w, int revents) /*
* struct member types:
* private: you may look at them, but not change them,
* and they might not mean anything to you.
* ro: can be read anytime, but only changed when the watcher isn't active.
* rw: can be read and modified anytime, even when the watcher is active.
*
* some internal details that might be helpful for debugging:
*
* active is either 0, which means the watcher is not active,
* or the array index of the watcher (periodics, timers)
* or the array index + 1 (most other watchers)
* or simply 1 for watchers that aren't in some array.
* pending is either 0, in which case the watcher isn't,
* or the array index + 1 in the pendings array.
*/ #if EV_MINPRI == EV_MAXPRI
# define EV_DECL_PRIORITY
#elif !defined (EV_DECL_PRIORITY)
# define EV_DECL_PRIORITY int priority;
#endif /* shared by all watchers */
#define EV_WATCHER(type) \
int active; /* private */ \
int pending; /* private */ \
EV_DECL_PRIORITY /* private */ \
EV_COMMON /* rw */ \
EV_CB_DECLARE (type) /* private */ #define EV_WATCHER_LIST(type) \
EV_WATCHER (type) \
struct ev_watcher_list *next; /* private */ #define EV_WATCHER_TIME(type) \
EV_WATCHER (type) \
ev_tstamp at; /* private */ /* base class, nothing to see here unless you subclass */
typedef struct ev_watcher
{
EV_WATCHER (ev_watcher)
} ev_watcher; /* base class, nothing to see here unless you subclass */
typedef struct ev_watcher_list
{
EV_WATCHER_LIST (ev_watcher_list)
} ev_watcher_list; /* base class, nothing to see here unless you subclass */
typedef struct ev_watcher_time
{
EV_WATCHER_TIME (ev_watcher_time)
} ev_watcher_time; /* invoked when fd is either EV_READable or EV_WRITEable */
/* revent EV_READ, EV_WRITE */
typedef struct ev_io
{
EV_WATCHER_LIST (ev_io) int fd; /* ro */
int events; /* ro */
} ev_io; /* invoked after a specific time, repeatable (based on monotonic clock) */
/* revent EV_TIMEOUT */
typedef struct ev_timer
{
EV_WATCHER_TIME (ev_timer) ev_tstamp repeat; /* rw */
} ev_timer; /* invoked at some specific time, possibly repeating at regular intervals (based on UTC) */
/* revent EV_PERIODIC */
typedef struct ev_periodic
{
EV_WATCHER_TIME (ev_periodic) ev_tstamp offset; /* rw */
ev_tstamp interval; /* rw */
ev_tstamp (*reschedule_cb)(struct ev_periodic *w, ev_tstamp now) EV_THROW; /* rw */
} ev_periodic; /* invoked when the given signal has been received */
/* revent EV_SIGNAL */
typedef struct ev_signal
{
EV_WATCHER_LIST (ev_signal) int signum; /* ro */
} ev_signal; /* invoked when sigchld is received and waitpid indicates the given pid */
/* revent EV_CHILD */
/* does not support priorities */
typedef struct ev_child
{
EV_WATCHER_LIST (ev_child) int flags; /* private */
int pid; /* ro */
int rpid; /* rw, holds the received pid */
int rstatus; /* rw, holds the exit status, use the macros from sys/wait.h */
} ev_child; #if EV_STAT_ENABLE
/* st_nlink = 0 means missing file or other error */
# ifdef _WIN32
typedef struct _stati64 ev_statdata;
# else
typedef struct stat ev_statdata;
# endif /* invoked each time the stat data changes for a given path */
/* revent EV_STAT */
typedef struct ev_stat
{
EV_WATCHER_LIST (ev_stat) ev_timer timer; /* private */
ev_tstamp interval; /* ro */
const char *path; /* ro */
ev_statdata prev; /* ro */
ev_statdata attr; /* ro */ int wd; /* wd for inotify, fd for kqueue */
} ev_stat;
#endif #if EV_IDLE_ENABLE
/* invoked when the nothing else needs to be done, keeps the process from blocking */
/* revent EV_IDLE */
typedef struct ev_idle
{
EV_WATCHER (ev_idle)
} ev_idle;
#endif /* invoked for each run of the mainloop, just before the blocking call */
/* you can still change events in any way you like */
/* revent EV_PREPARE */
typedef struct ev_prepare
{
EV_WATCHER (ev_prepare)
} ev_prepare; /* invoked for each run of the mainloop, just after the blocking call */
/* revent EV_CHECK */
typedef struct ev_check
{
EV_WATCHER (ev_check)
} ev_check; #if EV_FORK_ENABLE
/* the callback gets invoked before check in the child process when a fork was detected */
/* revent EV_FORK */
typedef struct ev_fork
{
EV_WATCHER (ev_fork)
} ev_fork;
#endif #if EV_CLEANUP_ENABLE
/* is invoked just before the loop gets destroyed */
/* revent EV_CLEANUP */
typedef struct ev_cleanup
{
EV_WATCHER (ev_cleanup)
} ev_cleanup;
#endif #if EV_EMBED_ENABLE
/* used to embed an event loop inside another */
/* the callback gets invoked when the event loop has handled events, and can be 0 */
typedef struct ev_embed
{
EV_WATCHER (ev_embed) struct ev_loop *other; /* ro */
ev_io io; /* private */
ev_prepare prepare; /* private */
ev_check check; /* unused */
ev_timer timer; /* unused */
ev_periodic periodic; /* unused */
ev_idle idle; /* unused */
ev_fork fork; /* private */
#if EV_CLEANUP_ENABLE
ev_cleanup cleanup; /* unused */
#endif
} ev_embed;
#endif #if EV_ASYNC_ENABLE
/* invoked when somebody calls ev_async_send on the watcher */
/* revent EV_ASYNC */
typedef struct ev_async
{
EV_WATCHER (ev_async) EV_ATOMIC_T sent; /* private */
} ev_async; # define ev_async_pending(w) (+(w)->sent)
#endif /* the presence of this union forces similar struct layout */
union ev_any_watcher
{
struct ev_watcher w;
struct ev_watcher_list wl; struct ev_io io;
struct ev_timer timer;
struct ev_periodic periodic;
struct ev_signal signal;
struct ev_child child;
#if EV_STAT_ENABLE
struct ev_stat stat;
#endif
#if EV_IDLE_ENABLE
struct ev_idle idle;
#endif
struct ev_prepare prepare;
struct ev_check check;
#if EV_FORK_ENABLE
struct ev_fork fork;
#endif
#if EV_CLEANUP_ENABLE
struct ev_cleanup cleanup;
#endif
#if EV_EMBED_ENABLE
struct ev_embed embed;
#endif
#if EV_ASYNC_ENABLE
struct ev_async async;
#endif
}; /* flag bits for ev_default_loop and ev_loop_new */
enum {
/* the default */
EVFLAG_AUTO = 0x00000000U, /* not quite a mask */
/* flag bits */
EVFLAG_NOENV = 0x01000000U, /* do NOT consult environment */
EVFLAG_FORKCHECK = 0x02000000U, /* check for a fork in each iteration */
/* debugging/feature disable */
EVFLAG_NOINOTIFY = 0x00100000U, /* do not attempt to use inotify */
#if EV_COMPAT3
EVFLAG_NOSIGFD = 0, /* compatibility to pre-3.9 */
#endif
EVFLAG_SIGNALFD = 0x00200000U, /* attempt to use signalfd */
EVFLAG_NOSIGMASK = 0x00400000U /* avoid modifying the signal mask */
}; /* method bits to be ored together */
enum {
EVBACKEND_SELECT = 0x00000001U, /* about anywhere */
EVBACKEND_POLL = 0x00000002U, /* !win */
EVBACKEND_EPOLL = 0x00000004U, /* linux */
EVBACKEND_KQUEUE = 0x00000008U, /* bsd */
EVBACKEND_DEVPOLL = 0x00000010U, /* solaris 8 */ /* NYI */
EVBACKEND_PORT = 0x00000020U, /* solaris 10 */
EVBACKEND_ALL = 0x0000003FU, /* all known backends */
EVBACKEND_MASK = 0x0000FFFFU /* all future backends */
}; #if EV_PROTOTYPES
EV_API_DECL int ev_version_major (void) EV_THROW;
EV_API_DECL int ev_version_minor (void) EV_THROW; EV_API_DECL unsigned int ev_supported_backends (void) EV_THROW;
EV_API_DECL unsigned int ev_recommended_backends (void) EV_THROW;
EV_API_DECL unsigned int ev_embeddable_backends (void) EV_THROW; EV_API_DECL ev_tstamp ev_time (void) EV_THROW;
EV_API_DECL void ev_sleep (ev_tstamp delay) EV_THROW; /* sleep for a while */ /* Sets the allocation function to use, works like realloc.
* It is used to allocate and free memory.
* If it returns zero when memory needs to be allocated, the library might abort
* or take some potentially destructive action.
* The default is your system realloc function.
*/
EV_API_DECL void ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW; /* set the callback function to call on a
* retryable syscall error
* (such as failed select, poll, epoll_wait)
*/
EV_API_DECL void ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW; #if EV_MULTIPLICITY /* the default loop is the only one that handles signals and child watchers */
/* you can call this as often as you like */
EV_API_DECL struct ev_loop *ev_default_loop (unsigned int flags EV_CPP (= 0)) EV_THROW; #ifdef EV_API_STATIC
EV_API_DECL struct ev_loop *ev_default_loop_ptr;
#endif EV_INLINE struct ev_loop *
ev_default_loop_uc_ (void) EV_THROW
{
extern struct ev_loop *ev_default_loop_ptr; return ev_default_loop_ptr;
} EV_INLINE int
ev_is_default_loop (EV_P) EV_THROW
{
return EV_A == EV_DEFAULT_UC;
} /* create and destroy alternative loops that don't handle signals */
EV_API_DECL struct ev_loop *ev_loop_new (unsigned int flags EV_CPP (= 0)) EV_THROW; EV_API_DECL ev_tstamp ev_now (EV_P) EV_THROW; /* time w.r.t. timers and the eventloop, updated after each poll */ #else EV_API_DECL int ev_default_loop (unsigned int flags EV_CPP (= 0)) EV_THROW; /* returns true when successful */ EV_API_DECL ev_tstamp ev_rt_now; EV_INLINE ev_tstamp
ev_now (void) EV_THROW
{
return ev_rt_now;
} /* looks weird, but ev_is_default_loop (EV_A) still works if this exists */
EV_INLINE int
ev_is_default_loop (void) EV_THROW
{
return 1;
} #endif /* multiplicity */ /* destroy event loops, also works for the default loop */
EV_API_DECL void ev_loop_destroy (EV_P); /* this needs to be called after fork, to duplicate the loop */
/* when you want to re-use it in the child */
/* you can call it in either the parent or the child */
/* you can actually call it at any time, anywhere :) */
EV_API_DECL void ev_loop_fork (EV_P) EV_THROW; EV_API_DECL unsigned int ev_backend (EV_P) EV_THROW; /* backend in use by loop */ EV_API_DECL void ev_now_update (EV_P) EV_THROW; /* update event loop time */ #if EV_WALK_ENABLE
/* walk (almost) all watchers in the loop of a given type, invoking the */
/* callback on every such watcher. The callback might stop the watcher, */
/* but do nothing else with the loop */
EV_API_DECL void ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW;
#endif #endif /* prototypes */ /* ev_run flags values */
enum {
EVRUN_NOWAIT = 1, /* do not block/wait */
EVRUN_ONCE = 2 /* block *once* only */
}; /* ev_break how values */
enum {
EVBREAK_CANCEL = 0, /* undo unloop */
EVBREAK_ONE = 1, /* unloop once */
EVBREAK_ALL = 2 /* unloop all loops */
}; #if EV_PROTOTYPES
EV_API_DECL int ev_run (EV_P_ int flags EV_CPP (= 0));
EV_API_DECL void ev_break (EV_P_ int how EV_CPP (= EVBREAK_ONE)) EV_THROW; /* break out of the loop */ /*
* ref/unref can be used to add or remove a refcount on the mainloop. every watcher
* keeps one reference. if you have a long-running watcher you never unregister that
* should not keep ev_loop from running, unref() after starting, and ref() before stopping.
*/
EV_API_DECL void ev_ref (EV_P) EV_THROW;
EV_API_DECL void ev_unref (EV_P) EV_THROW; /*
* convenience function, wait for a single event, without registering an event watcher
* if timeout is < 0, do wait indefinitely
*/
EV_API_DECL void ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW; # if EV_FEATURE_API
EV_API_DECL unsigned int ev_iteration (EV_P) EV_THROW; /* number of loop iterations */
EV_API_DECL unsigned int ev_depth (EV_P) EV_THROW; /* #ev_loop enters - #ev_loop leaves */
EV_API_DECL void ev_verify (EV_P) EV_THROW; /* abort if loop data corrupted */ EV_API_DECL void ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW; /* sleep at least this time, default 0 */
EV_API_DECL void ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW; /* sleep at least this time, default 0 */ /* advanced stuff for threading etc. support, see docs */
EV_API_DECL void ev_set_userdata (EV_P_ void *data) EV_THROW;
EV_API_DECL void *ev_userdata (EV_P) EV_THROW;
EV_API_DECL void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW;
EV_API_DECL void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P) EV_THROW) EV_THROW; EV_API_DECL unsigned int ev_pending_count (EV_P) EV_THROW; /* number of pending events, if any */
EV_API_DECL void ev_invoke_pending (EV_P); /* invoke all pending watchers */ /*
* stop/start the timer handling.
*/
EV_API_DECL void ev_suspend (EV_P) EV_THROW;
EV_API_DECL void ev_resume (EV_P) EV_THROW;
#endif #endif /* these may evaluate ev multiple times, and the other arguments at most once */
/* either use ev_init + ev_TYPE_set, or the ev_TYPE_init macro, below, to first initialise a watcher */
#define ev_init(ev,cb_) do { \
((ev_watcher *)(void *)(ev))->active = \
((ev_watcher *)(void *)(ev))->pending = 0; \
ev_set_priority ((ev), 0); \
ev_set_cb ((ev), cb_); \
} while (0) #define ev_io_set(ev,fd_,events_) do { (ev)->fd = (fd_); (ev)->events = (events_) | EV__IOFDSET; } while (0)
#define ev_timer_set(ev,after_,repeat_) do { ((ev_watcher_time *)(ev))->at = (after_); (ev)->repeat = (repeat_); } while (0)
#define ev_periodic_set(ev,ofs_,ival_,rcb_) do { (ev)->offset = (ofs_); (ev)->interval = (ival_); (ev)->reschedule_cb = (rcb_); } while (0)
#define ev_signal_set(ev,signum_) do { (ev)->signum = (signum_); } while (0)
#define ev_child_set(ev,pid_,trace_) do { (ev)->pid = (pid_); (ev)->flags = !!(trace_); } while (0)
#define ev_stat_set(ev,path_,interval_) do { (ev)->path = (path_); (ev)->interval = (interval_); (ev)->wd = -2; } while (0)
#define ev_idle_set(ev) /* nop, yes, this is a serious in-joke */
#define ev_prepare_set(ev) /* nop, yes, this is a serious in-joke */
#define ev_check_set(ev) /* nop, yes, this is a serious in-joke */
#define ev_embed_set(ev,other_) do { (ev)->other = (other_); } while (0)
#define ev_fork_set(ev) /* nop, yes, this is a serious in-joke */
#define ev_cleanup_set(ev) /* nop, yes, this is a serious in-joke */
#define ev_async_set(ev) /* nop, yes, this is a serious in-joke */ #define ev_io_init(ev,cb,fd,events) do { ev_init ((ev), (cb)); ev_io_set ((ev),(fd),(events)); } while (0)
#define ev_timer_init(ev,cb,after,repeat) do { ev_init ((ev), (cb)); ev_timer_set ((ev),(after),(repeat)); } while (0)
#define ev_periodic_init(ev,cb,ofs,ival,rcb) do { ev_init ((ev), (cb)); ev_periodic_set ((ev),(ofs),(ival),(rcb)); } while (0)
#define ev_signal_init(ev,cb,signum) do { ev_init ((ev), (cb)); ev_signal_set ((ev), (signum)); } while (0)
#define ev_child_init(ev,cb,pid,trace) do { ev_init ((ev), (cb)); ev_child_set ((ev),(pid),(trace)); } while (0)
#define ev_stat_init(ev,cb,path,interval) do { ev_init ((ev), (cb)); ev_stat_set ((ev),(path),(interval)); } while (0)
#define ev_idle_init(ev,cb) do { ev_init ((ev), (cb)); ev_idle_set ((ev)); } while (0)
#define ev_prepare_init(ev,cb) do { ev_init ((ev), (cb)); ev_prepare_set ((ev)); } while (0)
#define ev_check_init(ev,cb) do { ev_init ((ev), (cb)); ev_check_set ((ev)); } while (0)
#define ev_embed_init(ev,cb,other) do { ev_init ((ev), (cb)); ev_embed_set ((ev),(other)); } while (0)
#define ev_fork_init(ev,cb) do { ev_init ((ev), (cb)); ev_fork_set ((ev)); } while (0)
#define ev_cleanup_init(ev,cb) do { ev_init ((ev), (cb)); ev_cleanup_set ((ev)); } while (0)
#define ev_async_init(ev,cb) do { ev_init ((ev), (cb)); ev_async_set ((ev)); } while (0) #define ev_is_pending(ev) (0 + ((ev_watcher *)(void *)(ev))->pending) /* ro, true when watcher is waiting for callback invocation */
#define ev_is_active(ev) (0 + ((ev_watcher *)(void *)(ev))->active) /* ro, true when the watcher has been started */ #define ev_cb(ev) (ev)->cb /* rw */ #if EV_MINPRI == EV_MAXPRI
# define ev_priority(ev) ((ev), EV_MINPRI)
# define ev_set_priority(ev,pri) ((ev), (pri))
#else
# define ev_priority(ev) (+(((ev_watcher *)(void *)(ev))->priority))
# define ev_set_priority(ev,pri) ( (ev_watcher *)(void *)(ev))->priority = (pri)
#endif #define ev_periodic_at(ev) (+((ev_watcher_time *)(ev))->at) #ifndef ev_set_cb
# define ev_set_cb(ev,cb_) ev_cb (ev) = (cb_)
#endif /* stopping (enabling, adding) a watcher does nothing if it is already running */
/* stopping (disabling, deleting) a watcher does nothing unless its already running */
#if EV_PROTOTYPES /* feeds an event into a watcher as if the event actually occurred */
/* accepts any ev_watcher type */
EV_API_DECL void ev_feed_event (EV_P_ void *w, int revents) EV_THROW;
EV_API_DECL void ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW;
#if EV_SIGNAL_ENABLE
EV_API_DECL void ev_feed_signal (int signum) EV_THROW;
EV_API_DECL void ev_feed_signal_event (EV_P_ int signum) EV_THROW;
#endif
EV_API_DECL void ev_invoke (EV_P_ void *w, int revents);
EV_API_DECL int ev_clear_pending (EV_P_ void *w) EV_THROW; EV_API_DECL void ev_io_start (EV_P_ ev_io *w) EV_THROW;
EV_API_DECL void ev_io_stop (EV_P_ ev_io *w) EV_THROW; EV_API_DECL void ev_timer_start (EV_P_ ev_timer *w) EV_THROW;
EV_API_DECL void ev_timer_stop (EV_P_ ev_timer *w) EV_THROW;
/* stops if active and no repeat, restarts if active and repeating, starts if inactive and repeating */
EV_API_DECL void ev_timer_again (EV_P_ ev_timer *w) EV_THROW;
/* return remaining time */
EV_API_DECL ev_tstamp ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW; #if EV_PERIODIC_ENABLE
EV_API_DECL void ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW;
EV_API_DECL void ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW;
EV_API_DECL void ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW;
#endif /* only supported in the default loop */
#if EV_SIGNAL_ENABLE
EV_API_DECL void ev_signal_start (EV_P_ ev_signal *w) EV_THROW;
EV_API_DECL void ev_signal_stop (EV_P_ ev_signal *w) EV_THROW;
#endif /* only supported in the default loop */
# if EV_CHILD_ENABLE
EV_API_DECL void ev_child_start (EV_P_ ev_child *w) EV_THROW;
EV_API_DECL void ev_child_stop (EV_P_ ev_child *w) EV_THROW;
# endif # if EV_STAT_ENABLE
EV_API_DECL void ev_stat_start (EV_P_ ev_stat *w) EV_THROW;
EV_API_DECL void ev_stat_stop (EV_P_ ev_stat *w) EV_THROW;
EV_API_DECL void ev_stat_stat (EV_P_ ev_stat *w) EV_THROW;
# endif # if EV_IDLE_ENABLE
EV_API_DECL void ev_idle_start (EV_P_ ev_idle *w) EV_THROW;
EV_API_DECL void ev_idle_stop (EV_P_ ev_idle *w) EV_THROW;
# endif #if EV_PREPARE_ENABLE
EV_API_DECL void ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW;
EV_API_DECL void ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW;
#endif #if EV_CHECK_ENABLE
EV_API_DECL void ev_check_start (EV_P_ ev_check *w) EV_THROW;
EV_API_DECL void ev_check_stop (EV_P_ ev_check *w) EV_THROW;
#endif # if EV_FORK_ENABLE
EV_API_DECL void ev_fork_start (EV_P_ ev_fork *w) EV_THROW;
EV_API_DECL void ev_fork_stop (EV_P_ ev_fork *w) EV_THROW;
# endif # if EV_CLEANUP_ENABLE
EV_API_DECL void ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW;
EV_API_DECL void ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW;
# endif # if EV_EMBED_ENABLE
/* only supported when loop to be embedded is in fact embeddable */
EV_API_DECL void ev_embed_start (EV_P_ ev_embed *w) EV_THROW;
EV_API_DECL void ev_embed_stop (EV_P_ ev_embed *w) EV_THROW;
EV_API_DECL void ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW;
# endif # if EV_ASYNC_ENABLE
EV_API_DECL void ev_async_start (EV_P_ ev_async *w) EV_THROW;
EV_API_DECL void ev_async_stop (EV_P_ ev_async *w) EV_THROW;
EV_API_DECL void ev_async_send (EV_P_ ev_async *w) EV_THROW;
# endif #if EV_COMPAT3
#define EVLOOP_NONBLOCK EVRUN_NOWAIT
#define EVLOOP_ONESHOT EVRUN_ONCE
#define EVUNLOOP_CANCEL EVBREAK_CANCEL
#define EVUNLOOP_ONE EVBREAK_ONE
#define EVUNLOOP_ALL EVBREAK_ALL
#if EV_PROTOTYPES
EV_INLINE void ev_loop (EV_P_ int flags) { ev_run (EV_A_ flags); }
EV_INLINE void ev_unloop (EV_P_ int how ) { ev_break (EV_A_ how ); }
EV_INLINE void ev_default_destroy (void) { ev_loop_destroy (EV_DEFAULT); }
EV_INLINE void ev_default_fork (void) { ev_loop_fork (EV_DEFAULT); }
#if EV_FEATURE_API
EV_INLINE unsigned int ev_loop_count (EV_P) { return ev_iteration (EV_A); }
EV_INLINE unsigned int ev_loop_depth (EV_P) { return ev_depth (EV_A); }
EV_INLINE void ev_loop_verify (EV_P) { ev_verify (EV_A); }
#endif
#endif
#else
typedef struct ev_loop ev_loop;
#endif #endif EV_CPP(}) #endif
event.h
/*
* libevent compatibility header, only core events supported
*
* Copyright (c) 2007,2008,2010,2012 Marc Alexander Lehmann <libev@schmorp.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modifica-
* tion, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
* ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, the contents of this file may be used under the terms of
* the GNU General Public License ("GPL") version 2 or any later version,
* in which case the provisions of the GPL are applicable instead of
* the above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use your
* version of this file under the BSD license, indicate your decision
* by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete the
* provisions above, a recipient may use your version of this file under
* either the BSD or the GPL.
*/ #ifndef EVENT_H_
#define EVENT_H_ #ifdef EV_H
# include EV_H
#else
# include "ev.h"
#endif #ifndef EVLOOP_NONBLOCK
# define EVLOOP_NONBLOCK EVRUN_NOWAIT
#endif
#ifndef EVLOOP_ONESHOT
# define EVLOOP_ONESHOT EVRUN_ONCE
#endif
#ifndef EV_TIMEOUT
# define EV_TIMEOUT EV_TIMER
#endif #ifdef __cplusplus
extern "C" {
#endif /* we need sys/time.h for struct timeval only */
#if !defined (WIN32) || defined (__MINGW32__)
# include <time.h> /* mingw seems to need this, for whatever reason */
# include <sys/time.h>
#endif struct event_base; #define EVLIST_TIMEOUT 0x01
#define EVLIST_INSERTED 0x02
#define EVLIST_SIGNAL 0x04
#define EVLIST_ACTIVE 0x08
#define EVLIST_INTERNAL 0x10
#define EVLIST_INIT 0x80 typedef void (*event_callback_fn)(int, short, void *); struct event
{
/* libev watchers we map onto */
union {
struct ev_io io;
struct ev_signal sig;
} iosig;
struct ev_timer to; /* compatibility slots */
struct event_base *ev_base;
event_callback_fn ev_callback;
void *ev_arg;
int ev_fd;
int ev_pri;
int ev_res;
int ev_flags;
short ev_events;
}; event_callback_fn event_get_callback (const struct event *ev); #define EV_READ EV_READ
#define EV_WRITE EV_WRITE
#define EV_PERSIST 0x10
#define EV_ET 0x20 /* nop */ #define EVENT_SIGNAL(ev) ((int) (ev)->ev_fd)
#define EVENT_FD(ev) ((int) (ev)->ev_fd) #define event_initialized(ev) ((ev)->ev_flags & EVLIST_INIT) #define evtimer_add(ev,tv) event_add (ev, tv)
#define evtimer_set(ev,cb,data) event_set (ev, -1, 0, cb, data)
#define evtimer_del(ev) event_del (ev)
#define evtimer_pending(ev,tv) event_pending (ev, EV_TIMEOUT, tv)
#define evtimer_initialized(ev) event_initialized (ev) #define timeout_add(ev,tv) evtimer_add (ev, tv)
#define timeout_set(ev,cb,data) evtimer_set (ev, cb, data)
#define timeout_del(ev) evtimer_del (ev)
#define timeout_pending(ev,tv) evtimer_pending (ev, tv)
#define timeout_initialized(ev) evtimer_initialized (ev) #define signal_add(ev,tv) event_add (ev, tv)
#define signal_set(ev,sig,cb,data) event_set (ev, sig, EV_SIGNAL | EV_PERSIST, cb, data)
#define signal_del(ev) event_del (ev)
#define signal_pending(ev,tv) event_pending (ev, EV_SIGNAL, tv)
#define signal_initialized(ev) event_initialized (ev) const char *event_get_version (void);
const char *event_get_method (void); void *event_init (void);
void event_base_free (struct event_base *base); #define EVLOOP_ONCE EVLOOP_ONESHOT
int event_loop (int);
int event_loopexit (struct timeval *tv);
int event_dispatch (void); #define _EVENT_LOG_DEBUG 0
#define _EVENT_LOG_MSG 1
#define _EVENT_LOG_WARN 2
#define _EVENT_LOG_ERR 3
typedef void (*event_log_cb)(int severity, const char *msg);
void event_set_log_callback(event_log_cb cb); void event_set (struct event *ev, int fd, short events, void (*cb)(int, short, void *), void *arg);
int event_once (int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv); int event_add (struct event *ev, struct timeval *tv);
int event_del (struct event *ev);
void event_active (struct event *ev, int res, short ncalls); /* ncalls is being ignored */ int event_pending (struct event *ev, short, struct timeval *tv); int event_priority_init (int npri);
int event_priority_set (struct event *ev, int pri); struct event_base *event_base_new (void);
const char *event_base_get_method (const struct event_base *);
int event_base_set (struct event_base *base, struct event *ev);
int event_base_loop (struct event_base *base, int);
int event_base_loopexit (struct event_base *base, struct timeval *tv);
int event_base_dispatch (struct event_base *base);
int event_base_once (struct event_base *base, int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv);
int event_base_priority_init (struct event_base *base, int fd); /* next line is different in the libevent+libev version */
/*libevent-include*/ #ifdef __cplusplus
}
#endif #endif
event.c
/*
* libevent compatibility layer
*
* Copyright (c) 2007,2008,2009,2010,2012 Marc Alexander Lehmann <libev@schmorp.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modifica-
* tion, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
* ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, the contents of this file may be used under the terms of
* the GNU General Public License ("GPL") version 2 or any later version,
* in which case the provisions of the GPL are applicable instead of
* the above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use your
* version of this file under the BSD license, indicate your decision
* by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete the
* provisions above, a recipient may use your version of this file under
* either the BSD or the GPL.
*/ #include <stddef.h>
#include <stdlib.h>
#include <assert.h> #ifdef EV_EVENT_H
# include EV_EVENT_H
#else
# include "event.h"
#endif #if EV_MULTIPLICITY
# define dLOOPev struct ev_loop *loop = (struct ev_loop *)ev->ev_base
# define dLOOPbase struct ev_loop *loop = (struct ev_loop *)base
#else
# define dLOOPev
# define dLOOPbase
#endif /* never accessed, will always be cast from/to ev_loop */
struct event_base
{
int dummy;
}; static struct event_base *ev_x_cur; static ev_tstamp
ev_tv_get (struct timeval *tv)
{
if (tv)
{
ev_tstamp after = tv->tv_sec + tv->tv_usec * 1e-6;
return after ? after : 1e-6;
}
else
return -1.;
} #define EVENT_STRINGIFY(s) # s
#define EVENT_VERSION(a,b) EVENT_STRINGIFY (a) "." EVENT_STRINGIFY (b) const char *
event_get_version (void)
{
/* returns ABI, not API or library, version */
return EVENT_VERSION (EV_VERSION_MAJOR, EV_VERSION_MINOR);
} const char *
event_get_method (void)
{
return "libev";
} void *event_init (void)
{
#if EV_MULTIPLICITY
if (ev_x_cur)
ev_x_cur = (struct event_base *)ev_loop_new (EVFLAG_AUTO);
else
ev_x_cur = (struct event_base *)ev_default_loop (EVFLAG_AUTO);
#else
assert (("libev: multiple event bases not supported when not compiled with EV_MULTIPLICITY", !ev_x_cur)); ev_x_cur = (struct event_base *)(long)ev_default_loop (EVFLAG_AUTO);
#endif return ev_x_cur;
} const char *
event_base_get_method (const struct event_base *base)
{
return "libev";
} struct event_base *
event_base_new (void)
{
#if EV_MULTIPLICITY
return (struct event_base *)ev_loop_new (EVFLAG_AUTO);
#else
assert (("libev: multiple event bases not supported when not compiled with EV_MULTIPLICITY"));
return NULL;
#endif
} void event_base_free (struct event_base *base)
{
dLOOPbase; #if EV_MULTIPLICITY
if (!ev_is_default_loop (loop))
ev_loop_destroy (loop);
#endif
} int event_dispatch (void)
{
return event_base_dispatch (ev_x_cur);
} #ifdef EV_STANDALONE
void event_set_log_callback (event_log_cb cb)
{
/* nop */
}
#endif int event_loop (int flags)
{
return event_base_loop (ev_x_cur, flags);
} int event_loopexit (struct timeval *tv)
{
return event_base_loopexit (ev_x_cur, tv);
} event_callback_fn event_get_callback
(const struct event *ev)
{
return ev->ev_callback;
} static void
ev_x_cb (struct event *ev, int revents)
{
revents &= EV_READ | EV_WRITE | EV_TIMER | EV_SIGNAL; ev->ev_res = revents;
ev->ev_callback (ev->ev_fd, (short)revents, ev->ev_arg);
} static void
ev_x_cb_sig (EV_P_ struct ev_signal *w, int revents)
{
struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, iosig.sig)); if (revents & EV_ERROR)
event_del (ev); ev_x_cb (ev, revents);
} static void
ev_x_cb_io (EV_P_ struct ev_io *w, int revents)
{
struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, iosig.io)); if ((revents & EV_ERROR) || !(ev->ev_events & EV_PERSIST))
event_del (ev); ev_x_cb (ev, revents);
} static void
ev_x_cb_to (EV_P_ struct ev_timer *w, int revents)
{
struct event *ev = (struct event *)(((char *)w) - offsetof (struct event, to)); event_del (ev); ev_x_cb (ev, revents);
} void event_set (struct event *ev, int fd, short events, void (*cb)(int, short, void *), void *arg)
{
if (events & EV_SIGNAL)
ev_init (&ev->iosig.sig, ev_x_cb_sig);
else
ev_init (&ev->iosig.io, ev_x_cb_io); ev_init (&ev->to, ev_x_cb_to); ev->ev_base = ev_x_cur; /* not threadsafe, but it's how libevent works */
ev->ev_fd = fd;
ev->ev_events = events;
ev->ev_pri = 0;
ev->ev_callback = cb;
ev->ev_arg = arg;
ev->ev_res = 0;
ev->ev_flags = EVLIST_INIT;
} int event_once (int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv)
{
return event_base_once (ev_x_cur, fd, events, cb, arg, tv);
} int event_add (struct event *ev, struct timeval *tv)
{
dLOOPev; if (ev->ev_events & EV_SIGNAL)
{
if (!ev_is_active (&ev->iosig.sig))
{
ev_signal_set (&ev->iosig.sig, ev->ev_fd);
ev_signal_start (EV_A_ &ev->iosig.sig); ev->ev_flags |= EVLIST_SIGNAL;
}
}
else if (ev->ev_events & (EV_READ | EV_WRITE))
{
if (!ev_is_active (&ev->iosig.io))
{
ev_io_set (&ev->iosig.io, ev->ev_fd, ev->ev_events & (EV_READ | EV_WRITE));
ev_io_start (EV_A_ &ev->iosig.io); ev->ev_flags |= EVLIST_INSERTED;
}
} if (tv)
{
ev->to.repeat = ev_tv_get (tv);
ev_timer_again (EV_A_ &ev->to);
ev->ev_flags |= EVLIST_TIMEOUT;
}
else
{
ev_timer_stop (EV_A_ &ev->to);
ev->ev_flags &= ~EVLIST_TIMEOUT;
} ev->ev_flags |= EVLIST_ACTIVE; return 0;
} int event_del (struct event *ev)
{
dLOOPev; if (ev->ev_events & EV_SIGNAL)
ev_signal_stop (EV_A_ &ev->iosig.sig);
else if (ev->ev_events & (EV_READ | EV_WRITE))
ev_io_stop (EV_A_ &ev->iosig.io); if (ev_is_active (&ev->to))
ev_timer_stop (EV_A_ &ev->to); ev->ev_flags = EVLIST_INIT; return 0;
} void event_active (struct event *ev, int res, short ncalls)
{
dLOOPev; if (res & EV_TIMEOUT)
ev_feed_event (EV_A_ &ev->to, res & EV_TIMEOUT); if (res & EV_SIGNAL)
ev_feed_event (EV_A_ &ev->iosig.sig, res & EV_SIGNAL); if (res & (EV_READ | EV_WRITE))
ev_feed_event (EV_A_ &ev->iosig.io, res & (EV_READ | EV_WRITE));
} int event_pending (struct event *ev, short events, struct timeval *tv)
{
short revents = 0;
dLOOPev; if (ev->ev_events & EV_SIGNAL)
{
/* sig */
if (ev_is_active (&ev->iosig.sig) || ev_is_pending (&ev->iosig.sig))
revents |= EV_SIGNAL;
}
else if (ev->ev_events & (EV_READ | EV_WRITE))
{
/* io */
if (ev_is_active (&ev->iosig.io) || ev_is_pending (&ev->iosig.io))
revents |= ev->ev_events & (EV_READ | EV_WRITE);
} if (ev->ev_events & EV_TIMEOUT || ev_is_active (&ev->to) || ev_is_pending (&ev->to))
{
revents |= EV_TIMEOUT; if (tv)
{
ev_tstamp at = ev_now (EV_A); tv->tv_sec = (long)at;
tv->tv_usec = (long)((at - (ev_tstamp)tv->tv_sec) * 1e6);
}
} return events & revents;
} int event_priority_init (int npri)
{
return event_base_priority_init (ev_x_cur, npri);
} int event_priority_set (struct event *ev, int pri)
{
ev->ev_pri = pri; return 0;
} int event_base_set (struct event_base *base, struct event *ev)
{
ev->ev_base = base; return 0;
} int event_base_loop (struct event_base *base, int flags)
{
dLOOPbase; return !ev_run (EV_A_ flags);
} int event_base_dispatch (struct event_base *base)
{
return event_base_loop (base, 0);
} static void
ev_x_loopexit_cb (int revents, void *base)
{
dLOOPbase; ev_break (EV_A_ EVBREAK_ONE);
} int event_base_loopexit (struct event_base *base, struct timeval *tv)
{
ev_tstamp after = ev_tv_get (tv);
dLOOPbase; ev_once (EV_A_ -1, 0, after >= 0. ? after : 0., ev_x_loopexit_cb, (void *)base); return 0;
} struct ev_x_once
{
int fd;
void (*cb)(int, short, void *);
void *arg;
}; static void
ev_x_once_cb (int revents, void *arg)
{
struct ev_x_once *once = (struct ev_x_once *)arg; once->cb (once->fd, (short)revents, once->arg);
free (once);
} int event_base_once (struct event_base *base, int fd, short events, void (*cb)(int, short, void *), void *arg, struct timeval *tv)
{
struct ev_x_once *once = (struct ev_x_once *)malloc (sizeof (struct ev_x_once));
dLOOPbase; if (!once)
return -1; once->fd = fd;
once->cb = cb;
once->arg = arg; ev_once (EV_A_ fd, events & (EV_READ | EV_WRITE), ev_tv_get (tv), ev_x_once_cb, (void *)once); return 0;
} int event_base_priority_init (struct event_base *base, int npri)
{
/*dLOOPbase;*/ return 0;
}
libev代码的更多相关文章
- Python 开源异步并发框架的未来
http://segmentfault.com/a/1190000000471602 开源 Python 是开源的,介绍的这几个框架 Twisted.Tornado.Gevent 和 tulip 也都 ...
- libev学习代码
- libev学习(一)
一.libev简介 Libev是一个事件循环:你注册感兴趣的特定事件(比如一个文件可以读取时或者发生超时时),它将管理这些事件源,将这些事件反馈给你的程序.为了实现这些,至少要在你的进程(或线程)中执 ...
- libev安装与示例程序编译运行
Linux平台C网络编程,之前总是看各大名著(如UNIX环境高级编程和UNIX网络编程,还有TCP/IP详解 卷1:协议和深入理解计算机系统(原书第2版)),同时写点小程序练习.然而还是拿不出手. 参 ...
- 001.libev安装及eclipse下添加libev库链接
libev库安装: 1.下载页面:http://dist.schmorp.de/libev/ 当前版本下载: [root@mid_server ~]# cd /usr/local/src [root ...
- c 开源代码
阅读优秀代码是提高开发人员修为的一种捷径……1. WebbenchWebbench是一个在linux下使用的非常简单的网站压测工具.它使用fork()模拟多个客户端同时访问我们设定的URL,测试网站在 ...
- libev 宏展开
想看源码,宏太多,看着累,宏展开,再看,功力时间不够,先放下 放上宏展开后的代码. libev4.20 展开方示为 ./configure 修改makefile文件,字符串 替换CC为 CPP 注意要 ...
- 转: 最值得阅读学习的 10 个 C 语言开源项目代码
from: http://www.iteye.com/news/29665 1. Webbench Webbench是一个在linux下使用的非常简单的网站压测工具.它使用fork()模拟多个客户端同 ...
- 使用 libevent 和 libev 提高网络应用性能——I/O模型演进变化史
构建现代的服务器应用程序需要以某种方法同时接收数百.数千甚至数万个事件,无论它们是内部请求还是网络连接,都要有效地处理它们的操作. 有许多解决方案,但事件驱动也被广泛应用到网络编程中.并大规模部署在高 ...
随机推荐
- js-特效部分学习-拖拽效果
一.客户区大小ClientWidth和ClientHeight <style> #box { width: 200px; height: 200px; background-color: ...
- Hibernate配置文件与映射文件的创建
1. config文件的创建: 内容: <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE hib ...
- linux tcp协议定时器
1 连接建立定时器:75秒 2 保活定时器:2小时又10分钟 3 重传定时器:根据RTT计算 4 2MSL定时器:最大报文段存活时间 5 持续定时器
- Spring基础知识汇总
Spring优点: 低侵入式设计,代码的污染极低: 独立于各种应用服务器,基于Spring框架的应用,可以真正实现Write Once,Run Anywhere的承诺: Spring的IoC容器降低了 ...
- 用c#开发微信 (14) 微统计 - 阅读分享统计系统 4 部署测试 (最终效果图)
微信平台自带的统计功能太简单,有时我们需要统计有哪些微信个人用户阅读.分享了微信公众号的手机网页,以及微信个人用户访问手机网页的来源:朋友圈分享访问.好友分享消息访问等.本系统实现了手机网页阅读.分享 ...
- solr与.net系列课程(八)solr中重跑索引的注意事项
solr与.net系列课程(八)solr中重跑索引的注意事项 我们如果在项目中使用solr,那肯定就是把数据库中的数据跑进solr服务器中,solr有两种操作一种是新建索引,一种是增量索引,这里我们来 ...
- .NET跨平台:在mac命令行下用vim手写ASP.NET 5 MVC程序
昨天在 Mac 上手写了一个最简单的 ASP.NET 5 程序,直接在 Startup.cs 中通过 Response.WriteAsync() 输出响应内容,详见 .NET跨平台:在Mac上跟着错误 ...
- [ACM_水题] ZOJ 3712 [Hard to Play 300 100 50 最大最小]
MightyHorse is playing a music game called osu!. After playing for several months, MightyHorse disco ...
- ORM SQLOBJECT SIMPLE
step01: (Install sqlobject) sudo easy_install sqlobject step02: (Connect MySQL) step03: (Install sup ...
- iOS-APP发布应注意要点
Android和IOS的app发布的流程有一个相同之处,就是都需要先将编译好的app签名,然后上传到market里,但两者的复杂度是冰火两重天.Android可以手动通过集成在eclipse里的工具进 ...