LightOj1418 - Trees on My Island(Pick定理)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1418
题意:给你多边形中的顶点,n个点按顺时针或逆时针方向给出,然后求出多边形内部有多少个整数点;
皮克定理:
在一个多边形中。用I表示多边形内部的点数,E来表示多边形边上的点数,S表示多边形的面积。
满足:S = I + E/2 - 1;
求E,一条边(x1, y1, x2, y2)上的点数(包括两个顶点)= gcd(abs(x1-x2),abs(y1-y2));
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<stdio.h>
#include<queue>
using namespace std;
#define met(a, b) memset(a, b, sizeof(a))
#define mod 1000000007
typedef long long LL;
///////////////////////////////////////////////////////////////////////////////////////////////
/*
HDU2036题意:有一个多边形,含有n个顶点,按逆时针方向依次给出,求对应的多边形的面积;
*/
const int N = ;
struct point
{
LL x, y; point(){}
point(LL x, LL y):x(x), y(y) {} friend LL operator ^(point p, point q)
{
return p.x*q.y - p.y*q.x;
};
}p[N]; LL gcd(LL a, LL b)
{
return b==?a:gcd(b, a%b);
}
int main()
{
int n, T, t = ;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i=; i<=n; i++)
scanf("%lld %lld", &p[i].x, &p[i].y);
p[] = p[n]; LL S = , E = ;
for(int i=; i<=n; i++)
{
S += p[i]^p[i-];
E += gcd(abs(p[i].x-p[i-].x), abs(p[i].y-p[i-].y));
}
LL I = (abs(S)- E)/ + ; printf("Case %d: %lld\n", t++, I);
}
return ;
}
/*
IN:
1
9
1 2
2 1
4 1
4 3
6 2
6 4
4 5
1 5
2 3
OUT:
Case 1: 8
*/
LightOj1418 - Trees on My Island(Pick定理)的更多相关文章
- LightOJ 1418 Trees on My Island (Pick定理)
题目链接:LightOJ 1418 Problem Description I have bought an island where I want to plant trees in rows an ...
- UVa 10088 - Trees on My Island (pick定理)
样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...
- UVa 10088 (Pick定理) Trees on My Island
这种1A的感觉真好 #include <cstdio> #include <vector> #include <cmath> using namespace std ...
- HDU 3775 Chain Code ——(Pick定理)
Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...
- 【POJ】2954 Triangle(pick定理)
http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...
- Area(Pick定理POJ1256)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5429 Accepted: 2436 Description ...
- poj 2954 Triangle(Pick定理)
链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj1265Area(pick定理)
链接 Pick定理是说,在一个平面直角坐标系内,如果一个多边形的顶点全都在格点上,那么这个图形的面积恰好就等于边界上经过的格点数的一半加上内部所含格点数再减一. pick定理的一些应用 题意不好懂, ...
随机推荐
- BZOJ4182 : Shopping
最后选择的一定是树上的一个连通块,考虑树分治,每次只需考虑重心必选的情况,这就变成了以重心为根的树形依赖多重背包问题. 设f[x][j]表示从根节点到x这条路径及其左边的所有节点,以及以x为根的子树的 ...
- TYVJ P1075 硬币游戏 Label:dp
背景 农民John的牛喜欢玩硬币,所以John就为它们发明了一个新的两人硬币游戏,叫做Xoinc. 描述 最初地面上有一堆n个硬币(5<=n<=2000),从上面数第i个硬币的价值为C_i ...
- 【BZOJ】2209: [Jsoi2011]括号序列(splay)
http://www.lydsy.com/JudgeOnline/problem.php?id=2209 splay又犯逗........upd1那里的sum忘记赋值反............. 本题 ...
- Chromium源码--视频播放流程分析(拨开云雾)
转载请注明出处: http://www.cnblogs.com/fangkm/p/3791964.html 在PC浏览器中播放视频,大部分视频网站都是采用flash播放器,这多亏了Adobe Flas ...
- 基于nginx tomcat redis分布式web应用的session共享配置
一.前言 nginx 作为目前最流行的开源反向代理HTTP Server,用于实现资源缓存.web server负载均衡等功能,由于其轻量级.高性能.高可靠等特点在互联网项目中有着非常普遍的应用,相关 ...
- linux下安装uuid库
1.linux 下安装UUID库 1.1)ubuntu下安装uuid链接库 sudo apt-get install uuid-dev 1.2)CentOS yum install libuuid-d ...
- php 过时的sql操作库(学习使用)
学习地址:http://www.imooc.com/video/2459 <?php /** * 连接数据库 * @return resource */ function connect(){ ...
- 如何进行SCCM中客户端记录信息维护
SCCM 部署完毕之后,不久我们就会发现客户端代理状态,因为重装系统,非正常的退域,长时间不开机,导致客户端状态有不可用的,有过期的,重复的记录很多.当然我们可以手动的快速删除重复的记录,那么怎么能做 ...
- Objective-C、C++和swift 的运行效率比较
自己做iOS开发,以后慢慢都要转swift,前段时间看到网上的一个帖子,说swift的运行效率奇低,觉得自己有必要验证一下. 我用了一个最简单的加法运算,从0加到10000000,看三种语言的时耗. ...
- Android通过网页打开App到指定页面并传递数据
首先在 Android Manifest 文件中注册 intent-filter <activity android:name=".MainActivity" android ...