BZOJ-3231 递归数列 矩阵连乘+快速幂
题不是很难,但是啊,人很傻啊。。。机子也很鬼畜啊。。。
3231: [Sdoi2008]递归数列
Time Limit: 1 Sec Memory Limit: 256 MB
Submit: 569 Solved: 241
[Submit][Status][Discuss]
Description
一个由自然数组成的数列按下式定义:
对于i <= k:ai = bi
对于i > k: ai = c1ai-1 + c2ai-2 + … + ckai-k
其中bj和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + … + an, 并输出它除以给定自然数p的余数的值。
Input
由四行组成。
第一行是一个自然数k。
第二行包含k个自然数b1, b2,…,bk。
第三行包含k个自然数c1, c2,…,ck。
第四行包含三个自然数m, n, p。
Output
仅包含一行:一个正整数,表示(am + am+1 + am+2 + … + an) mod p的值。
Sample Input
2
1 1
1 1
2 10 1000003
Sample Output
142
HINT
对于100%的测试数据:
1<= k<=15
1 <= m <= n <= 1018
Source
第一次调试:矩阵都是【1001】【1001】虽然很多余,但是理论上并没错,但是机子low每次调用到就炸....
第二次调试:矩阵的初始化调上次时不小心删了....又WA....
第三次调试:出现负数,以为爆longlong果断+快速乘,still booming
然后发现是最后做前缀和减法时..可能减到负了.....
于是A之,带快速乘版本1600MS+,删之160MS+....珍爱生命远离快速乘TAT
构造的矩阵如下:
S为前缀和…最后只需要进行前缀和相减即可…
code:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
long long read()
{
long long x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
long long k,m,n,p;
long long s=0;
long long cc[50],bb[50];
struct Mat{
long long da[50][50];
Mat(){memset(da,0,sizeof(da));}
};
//long long quick_mul(long long x,long long y)
//{
// if (y==0) return 0;
// if (y==1) return x%p;
// long long re;
// re=quick_mul(x,y>>1);
// if ((y&1)==1) return (re+re+x)%p;
// else return (re+re)%p;
//}
Mat mul(Mat A,Mat B)
{
Mat C;
for (int i=1; i<=k+1; i++)
for (int j=1; j<=k+1; j++)
for (int kk=1; kk<=k+1; kk++)
C.da[i][j]=(C.da[i][j]+(A.da[i][kk]*B.da[kk][j])%p)%p;
return C;
}
Mat quick_pow(Mat A,long long x)
{
Mat re;
for (int i=1; i<=k+1; i++) re.da[i][i]=1;
for (long long i=x; i; i>>=1,A=mul(A,A))
if (i&1) re=mul(re,A);
return re;
}
Mat a;
Mat b;
void init()
{
for (int i=1;i<=k;i++) a.da[i][1]=a.da[i][k+1]=cc[i];
for (int i=2;i<=k;i++) a.da[i-1][i]=1;
a.da[k+1][k+1]=1;
for (int i=1;i<=k;i++) b.da[1][i]=bb[k-i+1];
b.da[1][k+1]=s;
}
long long work(long long x)
{
if (x==0) return b.da[1][k+1];
Mat re;
re=quick_pow(a,x);
re=mul(b,re);
return re.da[1][k+1];
}
int main()
{
k=read();
for (int i=1; i<=k; i++) bb[i]=read();
for (int i=1; i<=k; i++) cc[i]=read();
m=read(),n=read(),p=read();
for (int i=1; i<=k; i++) bb[i]%=p,s=(s+bb[i])%p,cc[i]%=p;
long long ans=0;
if (n<=k)
{
for (int i=m; i<=n; i++) ans=(ans+bb[i])%p;
printf("%lld\n",ans);
return 0;
}
init();
ans=work(n-k);
if (m>k) ans=(ans-work(m-k-1))%p;
else for (int i=1; i<m; i++) ans=(ans-bb[i])%p;
ans=(ans+p)%p;
printf("%lld\n",ans);
return 0;
}
BZOJ-3231 递归数列 矩阵连乘+快速幂的更多相关文章
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- Luogu T7152 细胞(递推,矩阵乘法,快速幂)
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每 ...
- BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )
矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...
- 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
- bzoj 3240 矩阵乘法+十进制快速幂
首先,构造出从f[][i]->f[][i+1]的转移矩阵a,和从f[i][m]->f[i+1][1]的转移矩阵b, 那么从f[1][1]转移到f[n][m]就是init*(a^(m-1)* ...
- P2461 [SDOI2008]递归数列 矩阵乘法+构造
还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...
- HDU1575Tr A(矩阵相乘与快速幂)
Tr A hdu1575 就是一个快速幂的应用: 只要知道怎么求矩阵相乘!!(比赛就知道会超时,就是没想到快速幂!!!) #include<iostream> #include<st ...
- poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)
Cow Relays Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7825 Accepted: 3068 Descri ...
随机推荐
- Jenkins学习八:Jenkins语言本地化
在Jenkins中,英语一大片,不懂英语的看着头疼.非常高兴的是,Jenkins作为一个主流流行的持续构建工具,提供了一个本地化语言的配置界面. 你可以找到它,在Jenkins每页的左下角.如下图: ...
- java 21 - 8 复制文本文件的5种方式
需求:复制文本文件 分析: 由于文本文件我们用记事本打开后可以读懂,所以使用字符流. 而字符流有5种复制的方式: 首先写main方法 public static void main(String[] ...
- java 16 - 5 LinkedList模拟栈数据结构的集合
请用LinkedList模拟栈数据结构的集合,并测试 题目的意思是: 你自己的定义一个集合类,在这个集合类内部可以使用LinkedList模拟. package cn_LinkedList; impo ...
- Windows 2008 R2 配置 DNS 实现二级域名
本文内容 域名解析 准备工作 安装 DNS 服务器 建立 DNS 区域 建立主机头 服务器网络设置 测试二级域名 IIS 建立 Web 站点 其他 DNS 服务 域名解析 域名解析,是域名到 IP 地 ...
- js对象深潜拷贝(从requirejs中抠出来的)
var op = Object.prototype, ostring = op.toString, hasOwn = op.hasOwnProperty; function isFunction(it ...
- Maven 其他功能
测试:指定测试哪些测试类,指定哪些测试类不测试,可以使用通配符 使用 Hudson 进行持续集成 持续集成:快速且高频率地自动构建项目的所有源码,并为项目成员提供丰富的反馈信息 一个典型的持续集成场景 ...
- 第二章 下山遇虎(@helper)
@helper方法定义 使用@helper关键字可以定义一个方法,这样就可以在页面中调 用这个方法了,和C#中的方法一样.在页面中定义的方法可以访问ViewBag,HttpContext等等页面的属性 ...
- 通过HttpClient来调用Web Api接口~续~实体参数的传递
并且我们知道了Post,Put方法只能有一个FromBody参数,再有多个参数时,上讲提到,需要将它封装成一个对象进行传递,而这讲主要围绕这个话题来说,接口层添加一个新类User_Info,用来进行数 ...
- PowerDesigner打开设计文件后提示failed to read the fileXXX的解决办法
擦,一身盗汗.一向的设计信息都在设计图里!竟然坏了,坏了!!!!! 惊.怒.悲 固然可以经由过程数据库当前状况反向工程.然则那么注解.我写的提示这些器材都邑消散. 比来的备份是10天前,恢复也会有必然 ...
- [iOS翻译]《iOS 7 Programming Pushing the Limits》系列:你可能不知道的Objective-C技巧
简介: 如果你阅读这本书,你可能已经牢牢掌握iOS开发的基础,但这里有一些小特点和实践是许多开发者并不熟悉的,甚至有数年经验的开发者也是.在这一章里,你会学到一些很重要的开发技巧,但这仍远远不够,你还 ...