【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版
Time Limit: 80 Sec Memory Limit: 512 MB
Submit:
241 Solved: 119
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
3 3
Sample Output
HINT
1<=N,M,K<=5000000,1<=T<=2000
Source
Solution
首先变换一下式子:
$$\sum_{d=1}^{n}d^{k}\sum_{i=1}^{n}\sum_{j=1}^{m}\left \lfloor gcd\left ( i,j \right )= d \right \rfloor$$
那么我们设$f\left ( d \right )$表示$gcd\left ( i,j \right )= d$的点对的数目,那么可以莫比乌斯反演得到:
$$f\left ( d \right )= \sum_{x=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu \left ( x \right )\left \lfloor \frac{n}{dx} \right \rfloor\left \lfloor \frac{m}{dx} \right \rfloor$$
那么就有:
$$Ans= \sum_{d=1}^{n}d^{k}\times f(d)$$
但这还不够求解,那么令$y= dx$代换一下可以得到:
$$Ans= \sum_{y}^{n}\left \lfloor \frac{n}{y} \right \rfloor\left \lfloor \frac{m}{y} \right \rfloor\sum_{d|y}d^{k}\mu \left ( \frac{y}{d} \right )$$
到这一步就已经可以求解了:
令$g\left ( y \right )= \sum_{d|y}d^{k}\mu \left ( \frac{y}{d} \right )$,发现是积性函数,那么线性筛处理出来即可
然后分块求解即可。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 5000010
#define p 1000000007
int T,K,N,M;
long long quick_pow(long long x,int y)
{
long long re=; x=x%p; y%=p;
for (int i=y; i; i>>=,x=x*x%p)
if (i&) re=re*x%p;
return re;
}
bool flag[maxn];long long F[maxn],prime[maxn],cnt,sum[maxn];
void prework()
{
flag[]=; F[]=; sum[]=;
for (int i=; i<maxn; i++)
{
if (!flag[i]) prime[++cnt]=i,F[i]=quick_pow(i,K)-;
for (int j=; j<=cnt && i*prime[j]<maxn; j++)
{
flag[i*prime[j]]=;
if (!(i%prime[j]))
{F[i*prime[j]]=F[i]*quick_pow(prime[j],K)%p;break;}
else F[i*prime[j]]=F[i]*F[prime[j]]%p;
}
sum[i]=sum[i-]+F[i]%p;
}
}
void work(int n,int m)
{
if (n>m) swap(n,m);
long long ans=;
for (int j,i=; i<=n; i=j+)
j=min(m/(m/i),n/(n/i)),
ans+=(sum[j]-sum[i-]+p)%p*(n/i)%p*(m/i)%p,ans%=p;
printf("%lld\n",ans);
}
int main()
{
T=read(),K=read();
prework();
while (T--)
{
N=read(),M=read();
work(N,M);
}
return ;
}
数论题做的巨心累,推了半天,毫无头绪,最后默默看题解....zky学长说这是裸题...
【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛的更多相关文章
- BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]
题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...
- bzoj 4407 于神之怒加强版 (反演+线性筛)
于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1184 Solved: 535[Submit][Status][Discuss] D ...
- BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数
Description 给下N,M,K.求 Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- BZOJ4407: 于神之怒加强版(莫比乌斯反演 线性筛)
Description 给下N,M,K.求 感觉好迷茫啊,很多变换看的一脸懵逼却又不知道去哪里学.一道题做一上午也是没谁了,, 首先按照套路反演化到最后应该是这个式子 $$ans = \sum_{d ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
随机推荐
- vector中pair的排序方法
直接上代码: bool judge(const pair<int,char> a, const pair<int ,char> b) { return a.first<b ...
- Ajax类库需要注意的问题
构建Ajax类库时,注意四步就可以了: 1:创建Ajax 对象 2:链接服务器 3:发送请求 4:返回响应 下面是我自己写的一个Ajax类库: function ajax(url,fnn,fai) ...
- 看程序写结果(program)
看程序写结果(program) Time Limit:1000ms Memory Limit:64MB 题目描述 LYK 最近在准备 NOIP2017 的初赛,它最不擅长的就是看程序写结果了,因此它拼 ...
- android strings.xml 报 is not translated in af,
57 down vote In your ADT go to window->Preferences->Android->Lint Error Checking Find there ...
- C和指针笔记 3.8 static关键字
当用于不同的上下文环境时,static关键字具有不同的意思. 当它用于函数定义时,或用于代码块之外的变量声明时,static关键字用于修改标识符的链接属性,从external改为internal,但标 ...
- Maven简介与简单使用
Maven项目对象模型(POM),可以通过一小段描述信息来管理项目的构建,报告和文档的软件项目管理工具. Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具.由于 Maven 的缺省构建 ...
- poj 1411 Calling Extraterrestrial Intelligence Again(超时)
Calling Extraterrestrial Intelligence Again Time Limit: 1000MS Memory Limit: 65536K Total Submissi ...
- 【转】【C#】【Thread】Mutex 互斥锁
Mutex:互斥(体) 又称同步基元. 当创建一个应用程序类时,将同时创建一个系统范围内的命名的Mutex对象.这个互斥元在整个操作系统中都是可见的.当已经存在一个同名的互斥元时,构造函数将会输出一个 ...
- 极简反传(BP)神经网络
一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1, ...
- 利用Chrome插件向指定页面植入js,劫持 XSS
资源来自:http://www.2cto.com/Article/201307/225986.html 首页 > 安全 > 网站安全 > 正文 利用Chrome插件向指定页面植入js ...