python 线性回归示例
说明:此文的第一部分参考了这里
用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq
例子、scipy.stats.linregress
例子、pandas.ols
例子等。
不过本文使用sklearn
库的linear_model.LinearRegression
,支持任意维度,非常好用。
一、二维直线的例子
预备知识:线性方程\(y = a * x + b\) 表示平面一直线
下面的例子中,我们根据房屋面积、房屋价格的历史数据,建立线性回归模型。
然后,根据给出的房屋面积,来预测房屋价格。这里是数据来源
import pandas as pd
from io import StringIO
from sklearn import linear_model
import matplotlib.pyplot as plt
# 房屋面积与价格历史数据(csv文件)
csv_data = 'square_feet,price\n150,6450\n200,7450\n250,8450\n300,9450\n350,11450\n400,15450\n600,18450\n'
# 读入dataframe
df = pd.read_csv(StringIO(csv_data))
print(df)
# 建立线性回归模型
regr = linear_model.LinearRegression()
# 拟合
regr.fit(df['square_feet'].reshape(-1, 1), df['price']) # 注意此处.reshape(-1, 1),因为X是一维的!
# 不难得到直线的斜率、截距
a, b = regr.coef_, regr.intercept_
# 给出待预测面积
area = 238.5
# 方式1:根据直线方程计算的价格
print(a * area + b)
# 方式2:根据predict方法预测的价格
print(regr.predict(area))
# 画图
# 1.真实的点
plt.scatter(df['square_feet'], df['price'], color='blue')
# 2.拟合的直线
plt.plot(df['square_feet'], regr.predict(df['square_feet'].reshape(-1,1)), color='red', linewidth=4)
plt.show()
效果图
二、三维平面的例子
预备知识:线性方程\(z = a * x + b * y + c\) 表示空间一平面
由于找不到真实数据,只好自己虚拟一组数据。
import numpy as np
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
xx, yy = np.meshgrid(np.linspace(0,10,10), np.linspace(0,100,10))
zz = 1.0 * xx + 3.5 * yy + np.random.randint(0,100,(10,10))
# 构建成特征、值的形式
X, Z = np.column_stack((xx.flatten(),yy.flatten())), zz.flatten()
# 建立线性回归模型
regr = linear_model.LinearRegression()
# 拟合
regr.fit(X, Z)
# 不难得到平面的系数、截距
a, b = regr.coef_, regr.intercept_
# 给出待预测的一个特征
x = np.array([[5.8, 78.3]])
# 方式1:根据线性方程计算待预测的特征x对应的值z(注意:np.sum)
print(np.sum(a * x) + b)
# 方式2:根据predict方法预测的值z
print(regr.predict(x))
# 画图
fig = plt.figure()
ax = fig.gca(projection='3d')
# 1.画出真实的点
ax.scatter(xx, yy, zz)
# 2.画出拟合的平面
ax.plot_wireframe(xx, yy, regr.predict(X).reshape(10,10))
ax.plot_surface(xx, yy, regr.predict(X).reshape(10,10), alpha=0.3)
plt.show()
效果图
python 线性回归示例的更多相关文章
- Python 线性回归(Linear Regression) 基本理解
背景 学习 Linear Regression in Python – Real Python,对线性回归理论上的理解做个回顾,文章是前天读完,今天凭着记忆和理解写一遍,再回温更正. 线性回归(Lin ...
- python selenium2示例 - 生成 HTMLTestRunner 测试报告
前言 在python selenium2自动化测试过程中,一个合适的报告是必须的,而HTMLTestRunner模块为我们提供了一个很好的报告生成功能. 什么是HTMLTestRunner HTMLT ...
- 2018-06-29 "西游记"主题Python入门示例尝试-数据结构 5.1-5.1.2
(见前: 中文代码示例视频演示Python入门第五章 数据结构 仍然基于官方文档, 欢迎建议(尤其是如何取材). 5. Data Structures - More on Lists 列表详述 > ...
- redis sentinel 高可用(HA)方案部署,及python应用示例
redis sentinel(哨兵)高可用集群的部署方法,并通过 python 程序实例讲解如何使用 redis sentinel 简介 介绍 redis sentinel(哨兵)集群的部署,配置一主 ...
- python selenium2示例 - 日志管理
logger继承图 前言 在自动化测试实践过程中,必不可少的就是进行日志管理,方便调试和生产问题追踪,python提供了logging模块来进行日志的管理.下面我们就logging模块的学习和使用进行 ...
- python selenium2示例 - email发送
前言 在进行日常的自动化测试实践中,我们总是需要将测试过程中的记录.结果等等等相关信息通过自动的手段发送给相关人员.python的smtplib.email模块为我们提供了很好的email发送等功能的 ...
- python发送邮件 示例
示例1 import smtplib from email.mime.text import MIMEText from email.header import Header def sedmail( ...
- Python 线性回归(Linear Regression) - 到底什么是 regression?
背景 学习 Linear Regression in Python – Real Python,对 regression 一词比较疑惑. 这个 linear Regression 中的 Regress ...
- Python - 线性回归(Linear Regression) 的 Python 实现
背景 学习 Linear Regression in Python – Real Python,前面几篇文章分别讲了"regression怎么理解","线性回归怎么理解& ...
随机推荐
- 【原/转】【boost】智能指针使用规则以及介绍
智能指针机制跟Objective-C里面的retainCount引用计数有着相同的原理,当某个对象的引用计数为0是执行delete操作,类似于autorelease 初学者在使用智能指针时,很多情况下 ...
- javascript 自定义类型 属性,方法
<html> <head> <script type="text/javascript"> function member(name,gende ...
- 记录JVM垃圾回收算法
垃圾回收算法可以分为三类,都基于标记-清除(复制)算法: Serial算法(单线程) 并行算法 并发算法 JVM会根据机器的硬件配置对每个内存代选择适合的回收算法,比如,如果机器多于1个核,会对年轻代 ...
- Python 常用函数time.strftime()简介
time.strftime()可以用来获得当前时间,可以将时间格式化为字符串等等 格式命令列在下面:(区分大小写) %a 星期几的简写%A 星期几的全称%b 月分的简写%B 月份的全称%c 标准的 ...
- 关于String StringBuffer StringBuilder
0. String对象的创建 1.关于类对象的创建,很普通的一种方式就是利用构造器,String类也不例外:String s=new String("Hello world&qu ...
- 深入PHP内核之面向对象总结
很久以前看过的,今天总结一下 一.PHP中创建一个类 在PHP中创建一个简单的类是这样的: <?php $obj = new test($url) ?> 二.zend_class_entr ...
- 问题解决——cout 输出 CString
Unicode下 wcout<<strText.GetString()<<endl;
- MyCat 学习笔记 第十二篇.数据分片 之 分片事务处理
1 环境说明 VM 模拟3台MYSQL 5.6 服务器 VM1 192.168.31.187:3307 VM2 192.168.31.212:3307 VM3 192.168.31.150: 330 ...
- SQLAlchemy 中文文档翻译计划
SQLAlchemy 中文文档翻译计划已启动. Python 文档协作翻译小组人手紧缺,有兴趣的朋友可以加入我们,完全公益性质.交流群:467338606. 希望大家能够勇敢地去翻译和改进翻译.虽然我 ...
- Rhythmbox中文乱码问题的解决
Rhythmbox中文乱码问题的解决 Rhythmbox是Ubuntu自带的一款很优秀的音乐播放器,但是在处理中文时却不太友好,导入歌曲时中文会变成乱码 这个问题也是很好解决的. ** 1.Ctrl+ ...