python 之 theano学习:
(1)theano主要支持符号矩阵表达式
(2)theano与numpy中都有broadcasting:numpy中是动态的,而theano需要在这之前就知道是哪维需要被广播。针对不同类型的数据给出如下的一张表,基本类型包括scalar、vector、row、col、matrix、tensor3、tensor4,然后有整形int对应的8、16、32、64位分别为b、w、i、l;float类型对应的32、64位为f、d;complex类型对应的64、128位为c、z。
Constructor | dtype | ndim | shape | broadcastable |
---|---|---|---|---|
bscalar | int8 | 0 | () | () |
bvector | int8 | 1 | (?,) | (False,) |
brow | int8 | 2 | (1,?) | (True, False) |
bcol | int8 | 2 | (?,1) | (False, True) |
bmatrix | int8 | 2 | (?,?) | (False, False) |
btensor3 | int8 | 3 | (?,?,?) | (False, False, False) |
btensor4 | int8 | 4 | (?,?,?,?) | (False, False, False, False) |
wscalar | int16 | 0 | () | () |
wvector | int16 | 1 | (?,) | (False,) |
wrow | int16 | 2 | (1,?) | (True, False) |
wcol | int16 | 2 | (?,1) | (False, True) |
wmatrix | int16 | 2 | (?,?) | (False, False) |
wtensor3 | int16 | 3 | (?,?,?) | (False, False, False) |
wtensor4 | int16 | 4 | (?,?,?,?) | (False, False, False, False) |
iscalar | int32 | 0 | () | () |
ivector | int32 | 1 | (?,) | (False,) |
irow | int32 | 2 | (1,?) | (True, False) |
icol | int32 | 2 | (?,1) | (False, True) |
imatrix | int32 | 2 | (?,?) | (False, False) |
itensor3 | int32 | 3 | (?,?,?) | (False, False, False) |
itensor4 | int32 | 4 | (?,?,?,?) | (False, False, False, False) |
lscalar | int64 | 0 | () | () |
lvector | int64 | 1 | (?,) | (False,) |
lrow | int64 | 2 | (1,?) | (True, False) |
lcol | int64 | 2 | (?,1) | (False, True) |
lmatrix | int64 | 2 | (?,?) | (False, False) |
ltensor3 | int64 | 3 | (?,?,?) | (False, False, False) |
ltensor4 | int64 | 4 | (?,?,?,?) | (False, False, False, False) |
dscalar | float64 | 0 | () | () |
dvector | float64 | 1 | (?,) | (False,) |
drow | float64 | 2 | (1,?) | (True, False) |
dcol | float64 | 2 | (?,1) | (False, True) |
dmatrix | float64 | 2 | (?,?) | (False, False) |
dtensor3 | float64 | 3 | (?,?,?) | (False, False, False) |
dtensor4 | float64 | 4 | (?,?,?,?) | (False, False, False, False) |
fscalar | float32 | 0 | () | () |
fvector | float32 | 1 | (?,) | (False,) |
frow | float32 | 2 | (1,?) | (True, False) |
fcol | float32 | 2 | (?,1) | (False, True) |
fmatrix | float32 | 2 | (?,?) | (False, False) |
ftensor3 | float32 | 3 | (?,?,?) | (False, False, False) |
ftensor4 | float32 | 4 | (?,?,?,?) | (False, False, False, False) |
cscalar | complex64 | 0 | () | () |
cvector | complex64 | 1 | (?,) | (False,) |
crow | complex64 | 2 | (1,?) | (True, False) |
ccol | complex64 | 2 | (?,1) | (False, True) |
cmatrix | complex64 | 2 | (?,?) | (False, False) |
ctensor3 | complex64 | 3 | (?,?,?) | (False, False, False) |
ctensor4 | complex64 | 4 | (?,?,?,?) | (False, False, False, False) |
zscalar | complex128 | 0 | () | () |
zvector | complex128 | 1 | (?,) | (False,) |
zrow | complex128 | 2 | (1,?) | (True, False) |
zcol | complex128 | 2 | (?,1) | (False, True) |
zmatrix | complex128 | 2 | (?,?) | (False, False) |
ztensor3 | complex128 | 3 | (?,?,?) | (False, False, False) |
ztensor4 | complex128 | 4 | (?,?,?,?) | (False, False, False, False) |
3、python中不同目录之间.py文件的引用:(1)在当前目录,直接通过import文件名去后缀即可;(2)包中包含__init__.py文件以及其他的一些.py文件,通过
from package_name import module_name或者
from package_name import *即可引用;(3)通过将py所对应的目录添加到该py对应的引用文件搜索路径即可;
上面的(2)中要区别对待从module中引用属性与方法--------------什么时候你应该使用 from module import?
- 如果你要经常访问模块的属性和方法,且不想一遍又一遍地敲入模块名,使用 from module import。
- 如果你想要有选择地导入某些属性和方法,而不想要其它的,使用 from module import。
- 如果模块包含的属性和方法与你的某个模块同名,你必须使用 import module 来避免名字冲突。
python 之 theano学习:的更多相关文章
- IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO - 学习笔记
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- Theano 学习笔记(一)
Theano 学习笔记(一) theano 为什么要定义共享变量? 定义共享变量的原因在于GPU的使用,如果不定义共享的话,那么当GPU调用这些变量时,遇到一次就要调用一次,这样就会花费大量时间在数据 ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- Python 装饰器学习
Python装饰器学习(九步入门) 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方式. 第一步:最简单的函数,准备附加额外功能 1 2 3 4 5 6 7 8 # -*- c ...
- Requests:Python HTTP Module学习笔记(一)(转)
Requests:Python HTTP Module学习笔记(一) 在学习用python写爬虫的时候用到了Requests这个Http网络库,这个库简单好用并且功能强大,完全可以代替python的标 ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- (转载)Python装饰器学习
转载出处:http://www.cnblogs.com/rhcad/archive/2011/12/21/2295507.html 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方 ...
- python网络爬虫学习笔记
python网络爬虫学习笔记 By 钟桓 9月 4 2014 更新日期:9月 4 2014 文章文件夹 1. 介绍: 2. 从简单语句中開始: 3. 传送数据给server 4. HTTP头-描写叙述 ...
随机推荐
- Hadoop HDFS编程 API入门系列之路径过滤上传多个文件到HDFS(二)
不多说,直接上代码. 代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs6; import java.io.IOException;import jav ...
- Deep Learning(深度学习)学习笔记整理
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...
- 基于WDF的PCI/PCIe接口卡Windows驱动程序(3)- 驱动程序代码(头文件)
原文出处:http://www.cnblogs.com/jacklu/p/4679304.html 在WDF的PCIe驱动程序中,共有四个.h文件(Public.h Driver.h Device ...
- objective c,copy, mutableCopy区别
copy总是返回不能被修改的对象,mutableCopy返回可以被修改的对象 例: NSArray *array = @[@"test", @"test2"]; ...
- System.DateTime.Now的内容
?System.DateTime.Now{2016/10/09 15:19:12} Date: {2016/10/09 0:00:00} dateData: 985948826838121 ...
- CIDR-Address介绍
CIDR是一种用二进制表示法来代替十进制表示法的新方法. IP地址有“类”的概念,/8掩码是A类,/16掩码是B类,/24掩码是C类等等.但是/12,/18,/25呢?这就是无类的概念了,CIDR的作 ...
- sql Server中SET QUOTED_IDENTIFIER的使用
在存储过程中经常会有 Sql代码 SET QUOTED_IDENTIFIER on SET QUOTED_IDENTIFIER off 这样的语句,那么SET QUOTED_IDENTIFIER到 ...
- hivepython 同时读入python 且python脚本中处理外部文件txt
找出表test_gid2中每个gid的安装列表中含有文件pkgs中的pkg名字的数据行. pkgs文件要与python脚本放在一个路径下. 用 transform 的传入数据的时候,不管原文件分隔 ...
- webform组合查询和分页
1.组合查询(1)数据访问类 //参数1:SQL语句 参数2:哈希表public List<Users> chas(string s,Hashtable has) { List<Us ...
- oracle全文检索
全文检索 oracle对使用几十万以上的数据进行like模糊查询速度极差,包括 like 'AAA%' ,like '%AAA',like '%AAA%',like '%A%A%'的那些模糊查询.网上 ...