python 之 theano学习:
(1)theano主要支持符号矩阵表达式
(2)theano与numpy中都有broadcasting:numpy中是动态的,而theano需要在这之前就知道是哪维需要被广播。针对不同类型的数据给出如下的一张表,基本类型包括scalar、vector、row、col、matrix、tensor3、tensor4,然后有整形int对应的8、16、32、64位分别为b、w、i、l;float类型对应的32、64位为f、d;complex类型对应的64、128位为c、z。
Constructor | dtype | ndim | shape | broadcastable |
---|---|---|---|---|
bscalar | int8 | 0 | () | () |
bvector | int8 | 1 | (?,) | (False,) |
brow | int8 | 2 | (1,?) | (True, False) |
bcol | int8 | 2 | (?,1) | (False, True) |
bmatrix | int8 | 2 | (?,?) | (False, False) |
btensor3 | int8 | 3 | (?,?,?) | (False, False, False) |
btensor4 | int8 | 4 | (?,?,?,?) | (False, False, False, False) |
wscalar | int16 | 0 | () | () |
wvector | int16 | 1 | (?,) | (False,) |
wrow | int16 | 2 | (1,?) | (True, False) |
wcol | int16 | 2 | (?,1) | (False, True) |
wmatrix | int16 | 2 | (?,?) | (False, False) |
wtensor3 | int16 | 3 | (?,?,?) | (False, False, False) |
wtensor4 | int16 | 4 | (?,?,?,?) | (False, False, False, False) |
iscalar | int32 | 0 | () | () |
ivector | int32 | 1 | (?,) | (False,) |
irow | int32 | 2 | (1,?) | (True, False) |
icol | int32 | 2 | (?,1) | (False, True) |
imatrix | int32 | 2 | (?,?) | (False, False) |
itensor3 | int32 | 3 | (?,?,?) | (False, False, False) |
itensor4 | int32 | 4 | (?,?,?,?) | (False, False, False, False) |
lscalar | int64 | 0 | () | () |
lvector | int64 | 1 | (?,) | (False,) |
lrow | int64 | 2 | (1,?) | (True, False) |
lcol | int64 | 2 | (?,1) | (False, True) |
lmatrix | int64 | 2 | (?,?) | (False, False) |
ltensor3 | int64 | 3 | (?,?,?) | (False, False, False) |
ltensor4 | int64 | 4 | (?,?,?,?) | (False, False, False, False) |
dscalar | float64 | 0 | () | () |
dvector | float64 | 1 | (?,) | (False,) |
drow | float64 | 2 | (1,?) | (True, False) |
dcol | float64 | 2 | (?,1) | (False, True) |
dmatrix | float64 | 2 | (?,?) | (False, False) |
dtensor3 | float64 | 3 | (?,?,?) | (False, False, False) |
dtensor4 | float64 | 4 | (?,?,?,?) | (False, False, False, False) |
fscalar | float32 | 0 | () | () |
fvector | float32 | 1 | (?,) | (False,) |
frow | float32 | 2 | (1,?) | (True, False) |
fcol | float32 | 2 | (?,1) | (False, True) |
fmatrix | float32 | 2 | (?,?) | (False, False) |
ftensor3 | float32 | 3 | (?,?,?) | (False, False, False) |
ftensor4 | float32 | 4 | (?,?,?,?) | (False, False, False, False) |
cscalar | complex64 | 0 | () | () |
cvector | complex64 | 1 | (?,) | (False,) |
crow | complex64 | 2 | (1,?) | (True, False) |
ccol | complex64 | 2 | (?,1) | (False, True) |
cmatrix | complex64 | 2 | (?,?) | (False, False) |
ctensor3 | complex64 | 3 | (?,?,?) | (False, False, False) |
ctensor4 | complex64 | 4 | (?,?,?,?) | (False, False, False, False) |
zscalar | complex128 | 0 | () | () |
zvector | complex128 | 1 | (?,) | (False,) |
zrow | complex128 | 2 | (1,?) | (True, False) |
zcol | complex128 | 2 | (?,1) | (False, True) |
zmatrix | complex128 | 2 | (?,?) | (False, False) |
ztensor3 | complex128 | 3 | (?,?,?) | (False, False, False) |
ztensor4 | complex128 | 4 | (?,?,?,?) | (False, False, False, False) |
3、python中不同目录之间.py文件的引用:(1)在当前目录,直接通过import文件名去后缀即可;(2)包中包含__init__.py文件以及其他的一些.py文件,通过
from package_name import module_name或者
from package_name import *即可引用;(3)通过将py所对应的目录添加到该py对应的引用文件搜索路径即可;
上面的(2)中要区别对待从module中引用属性与方法--------------什么时候你应该使用 from module import?
- 如果你要经常访问模块的属性和方法,且不想一遍又一遍地敲入模块名,使用 from module import。
- 如果你想要有选择地导入某些属性和方法,而不想要其它的,使用 from module import。
- 如果模块包含的属性和方法与你的某个模块同名,你必须使用 import module 来避免名字冲突。
python 之 theano学习:的更多相关文章
- IMPLEMENTING A GRU/LSTM RNN WITH PYTHON AND THEANO - 学习笔记
catalogue . 引言 . LSTM NETWORKS . LSTM 的变体 . GRUs (Gated Recurrent Units) . IMPLEMENTATION GRUs 0. 引言 ...
- 从Theano到Lasagne:基于Python的深度学习的框架和库
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Incept ...
- Theano 学习笔记(一)
Theano 学习笔记(一) theano 为什么要定义共享变量? 定义共享变量的原因在于GPU的使用,如果不定义共享的话,那么当GPU调用这些变量时,遇到一次就要调用一次,这样就会花费大量时间在数据 ...
- Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM
yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...
- Python 装饰器学习
Python装饰器学习(九步入门) 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方式. 第一步:最简单的函数,准备附加额外功能 1 2 3 4 5 6 7 8 # -*- c ...
- Requests:Python HTTP Module学习笔记(一)(转)
Requests:Python HTTP Module学习笔记(一) 在学习用python写爬虫的时候用到了Requests这个Http网络库,这个库简单好用并且功能强大,完全可以代替python的标 ...
- Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习
http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...
- (转载)Python装饰器学习
转载出处:http://www.cnblogs.com/rhcad/archive/2011/12/21/2295507.html 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方 ...
- python网络爬虫学习笔记
python网络爬虫学习笔记 By 钟桓 9月 4 2014 更新日期:9月 4 2014 文章文件夹 1. 介绍: 2. 从简单语句中開始: 3. 传送数据给server 4. HTTP头-描写叙述 ...
随机推荐
- 华为OJ题目:扑克牌大小
题目描述: 扑克牌游戏大家应该都比较熟悉了,一副牌由54张组成,含3~A.2各4张,小王1张,大王1张.牌面从小到大用如下字符和字符串表示(其中,小写joker表示小王,大写JOKER表示大王):3 ...
- highcharts相关属性
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- GRIDVIEW 控件
http://www.cnblogs.com/shanymen/archive/2009/05/22/1486654.html GridView控件是.net里的一个显示数据控件,该控件制作很人性化, ...
- .NET3.5中JSON用法以及封装JsonUtils工具类
.NET3.5中JSON用法以及封装JsonUtils工具类 我们讲到JSON的简单使用,现在我们来研究如何进行封装微软提供的JSON基类,达到更加方便.简单.强大且重用性高的效果. 首先创建一个类 ...
- 关于php多线程的记录
最近需要对3W台服务器进行下发脚本,如果一个一个执行,时间大约在2个小时,特别的慢,于是修改程序,采用php的多线程去分发,大概在10分钟左右完成,下面记录下这次的经验和理解: 我所理解的php的多线 ...
- Linux网络常用指令
5.1 网络参数设定使用的指令 ifconfig 查询 设定网络卡与 IP 网域等相关参数: ifup, ifdown 这两个档案是 script,透过更简单的方式来启动网络接口: route 查 ...
- SHELL脚本攻略(学习笔记)--2.4 find
转载请注明出处:http://www.cnblogs.com/f-ck-need-u/p/5916657.html 超级强大的find命令. find搜索是从磁盘搜索,而不是从数据库搜索. 2.4 ...
- Linux命令之reset - 终端屏幕混乱的终结者
用途说明 reset命令是用来重新初始化终端的(terminal initialization).在有些情况,终端显示会混乱无比,比如不小心显示了一个二进制文件,以前我在不知道reset命令时,只好将 ...
- require和include的区别
require 的使用方法如 require("MyRequireFile.php"); .这个函数通常放在 PHP 程序的最前面,PHP 程序在执行前,就会先读入 require ...
- sql子查询 嵌套SELECT语句
嵌套SELECT语句也叫子查询,一个 SELECT 语句的查询结果能够作为另一个语句的输入值.子查询不但能够出现在Where子句中,也能够出现在from子句中,作为一个临时表使用,也能够出现在sele ...