讲一下题目大意,就是有两个长度为p + 1和q + 1的序列,求它们的LCS。

  如果用O(pq)的算法对于这道题来说还是太慢了。所以要另外想一些方法。注意到序列中的所有元素都不相同,所以两个序列中数对应的位置都是唯一的,就用第一个序列的元素对第二个序列的元素进行重新编号,记录它们在第一个序列中出现的位置(如果不存在就随便记一个不能达到的值),不存在的话就说明它们对LCS没有贡献。那么看张图:

  如果不能明白,那。。看张有关不合法情况的图:

  有没有发现LCS的长度就是第二个序列的LIS的长度?

 /**
* uva
* Problem#10635
* Accepted
* Time:0ms
*/
#include<iostream>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<sstream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<stack>
using namespace std;
typedef bool boolean;
#define INF 0xfffffff
#define smin(a, b) a = min(a, b)
#define smax(a, b) a = max(a, b)
template<typename T>
inline void readInteger(T& u){
char x;
int aFlag = ;
while(!isdigit((x = getchar())) && x != '-');
if(x == '-'){
x = getchar();
aFlag = -;
}
for(u = x - ''; isdigit((x = getchar())); u = (u << ) + (u << ) + x - '');
ungetc(x, stdin);
u *= aFlag;
} template<typename T>
class IndexedStack{
public:
T *p;
int s;
IndexedStack():s(), p(NULL){ }
IndexedStack(int size):s(){
p = new T[(const int)size];
}
boolean empty() { return s == ; }
T top() { return p[s - ]; }
int size() { return s; }
void pop() { s--; }
void push(T& x) { p[s++] = x; }
void clear() { s = ; }
T& operator [](int pos) { return p[pos]; }
}; int n, p, q;
int *pce;
int *pss;
int *ets; inline void init(){
readInteger(n);
readInteger(p);
readInteger(q);
pce = new int[(const int)(p + )];
pss = new int[(const int)(q + )];
ets = new int[(const int)(n * n + )];
memset(ets, , sizeof(int) * (n * n + ));
p += , q += ;
for(int i = ; i <= p; i++){
readInteger(pce[i]);
ets[pce[i]] = i;
}
for(int i = ; i <= q; i++){
readInteger(pss[i]);
pss[i] = ets[pss[i]];
}
delete[] ets;
} int upper_bound(int *a, int from, int end, int val){
int l = from, r = end - ;
while(l <= r){
int mid = (l + r) >> ;
if(val < a[mid]) r = mid - ;
else l = mid + ;
}
return r + ;
} IndexedStack<int> s;
inline int lis(){
s = IndexedStack<int>(q + );
for(int i = ; i <= q; i++){
if(pss[i] == ) continue;
int l = upper_bound(s.p, , s.size(), pss[i]);
if(l == s.size()) s.push(pss[i]);
else s[l] = pss[i];
}
return s.size();
} int T, kase;
inline void solve(){
int len = lis();
printf("Case %d: %d\n", kase, len);
delete[] pss;
delete[] pce;
} int main(){
readInteger(T);
while(T--){
kase++;
init();
solve();
}
return ;
}

[题解]UVa 10635 Prince and Princess的更多相关文章

  1. uva 10635 - Prince and Princess(LCS)

    题目连接:10635 - Prince and Princess 题目大意:给出n, m, k,求两个长度分别为m + 1 和 k + 1且由1~n * n组成的序列的最长公共子序列长的. 解题思路: ...

  2. UVA - 10635 Prince and Princess LCS转LIS

    题目链接: http://bak.vjudge.net/problem/UVA-10635 Prince and Princess Time Limit: 3000MS 题意 给你两个数组,求他们的最 ...

  3. UVa 10635 Prince and Princess - 动态规划

    讲一下题目大意,就是有两个长度为p + 1和q + 1的序列,求它们的LCS. 如果用O(pq)的算法对于这道题来说还是太慢了.所以要另外想一些方法.注意到序列中的所有元素都不相同,所以两个序列中数对 ...

  4. Uva 10635 - Prince and Princess 问题转化,元素互不相同(在自身序列中独特)的两个数列的LCS,LIS 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  5. [UVA 10635] Prince ans Princess

    图片加载可能有点慢,请跳过题面先看题解,谢谢 这道题... 还是要点思维的... 第一眼看是个最长公共子序列,但是, \(N\le 62500\) ,并不能 \(O(n^2)\) 求 $ $ 这道题有 ...

  6. UVA 10635 Prince and Princess【LCS 问题转换为 LIS】

    题目链接: http://acm.hust.edu.cn/vjudge/problem/visitOriginUrl.action?id=19051 题意: 有两个长度分别为p+1和q+1的由1到n2 ...

  7. UVA 10635 - Prince and Princess LCS转化为LIS

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. Uva 10635 - Prince and Princess LCS/LIS

    两个长度分别为p+1和q+1的由1到n2之前的整数组成的序列,每个序列的元素各不相等,两个序列第一个元素均为1.求两个序列的最长公共子序列 https://uva.onlinejudge.org/in ...

  9. UVA 10635 Prince and Princess

    题意描述:有两个长度分别为p+1和q+1的序列,每个元素中的各个元素互不相同.都是1~n^2之间的整数,求A和B的最长公共子序列.(2<=n<=250,1<=p,q<=n^2) ...

随机推荐

  1. 10-Java 网络通信

    (一) Java中的XML操作 1.XML数据格式简介: (1)XML,即可扩展标记语言(Extensible Markup Language),标准通用标记语言的子集,一种用于标记电子文件使其具有结 ...

  2. 我终于搞清楚为什么谷歌地图获取到的联通3G基站与大家手头的基站表不同了

    我终于搞清楚这个问题了,大家使用谷歌地图手机版.MobileTrack以及网优用的FieldTest获取到的WCDMA基站Cellid为什么不是大家手头的CellTrack91或基站表里的数字了... ...

  3. BizTalk 中使用 WCF-OracleDB adapter

    在使用BizTalk WCF-OracleDB adapter操作Oracle数据库时,遇到了一些问题,记录如下. 按照BizTalk的文档,目前BizTalk 2010支持的Oracle数据库版本如 ...

  4. 每天一个 Linux 命令(7):mv命令

    mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 1.命令格式: mv [选项] 源文件或目 ...

  5. [ActionScript 3.0] AS3.0 涂鸦及擦除功能,撤销重做步骤记录实例

    package { import flash.display.Bitmap; import flash.display.BitmapData; import flash.display.BlendMo ...

  6. MysqlServer如何实现成功卸载,并成功安装

    MysqlServer卸载过程如下: (1).在控制面板或者通过其他卸载工具中,卸载MysqlServer. (2).打开C:\ProgramData---这个文件是隐藏的,需显示出来.在里面找到my ...

  7. Ubuntu中启用关闭Network-manager网络设置问题!

    Ubuntu中启用关闭Network-manager网络设置问题! [Server版本] 在UbuntuServer版本中,因为只存有命令行模式,所以要想进行网络参数设置,只能通过修改/etc/net ...

  8. Mono addin 学习笔记 4 再论数据扩展点(Data only extension point)

    1. Attribute声明方式 定义扩展属性 [AttributeUsage(AttributeTargets.Assembly, AllowMultiple= true)] public clas ...

  9. 含大量行的订单创建时候creditlimit校验最耗时间

    含大量行的订单创建时候creditlimit校验最耗时间

  10. 学习Python的第一课(简单的单元测试)

    由于有C#开发基础,感觉学习Python应该不难,主要是一些语法了,再加上现在互联网这么发达. 感觉还是要有思路,否则学什么也只能是什么. 话不多说,简单发下这几天的学习成果吧: 第一次写博客,大家不 ...